scholarly journals Assessment of effect of KCl salinity stress on growth and yield of wheat (Triticum aestivum) genotypes under Allahabad climatic condition

2020 ◽  
Vol 8 (4) ◽  
pp. 2626-2629
Author(s):  
Vijay P Yadav ◽  
Pranay P Pandey ◽  
Neelam Yadav
Author(s):  
Kousik Atta ◽  
Jahnavi Sen ◽  
Pravachan Chettri ◽  
Anjan Kumar Pal

Background: Salinity and drought are the major abiotic stresses and both can cause osmotic imbalances. Drought stress directly results in osmotic stress whereas salinity problem firstly disrupts the water balance and eventually induces ion toxicity which results in cyto-toxicity, metabolic impairment, nutrient imbalance and finally poor crop growth and yield. The co-ordinated up-regulation or constitutive expression of antioxidative system in plants is the main defense in plant against these stresses and thus the present experiment was undertaken to study the antioxidant responses under drought and salinity stress at seedling stage in ricebean (Bidhan 1). Methods: For studying the effect of iso-osmotic potential of salinity and drought stress solutions of NaCl and PEG 6000 with -0.2 MPa (50mM NaCl and 10% PEG), -0.4 MPa (100 mM NaCl and 12% PEG) and -0.8 MPa (200mM NaCl and 18% PEG) osmotic potential were used. The experiment was done in the laboratory of Department Plant Physiology, Bidhan Chandra Krishi Viswavidyalaya (BCKV), Mohanpur, Nadia and West Bengal in the year 2017-18 and 2018-19. Result: Under moderate to high intensity of osmotic stresses the leaf proline content decreased. The mild and medium stress treatments induced much higher activity of GPOX and APX in the leaf which then decreased somewhat as the intensity of stress increased. The experiment showed that drought stress was found to produce more drastic effects on seedling growth in ricebean as compared to the salinity stress at iso-osmotic potentials.


2018 ◽  
Vol 16 (3) ◽  
pp. e0802 ◽  
Author(s):  
Saad Farouk ◽  
Sally A. Arafa

Salinity is a global issue threatening land productivity and food production. The present study aimed to examine the role of sodium nitroprusside (SNP) on the alleviation of NaCl stress on different parameters of canola (Brassica napus L.) plant growth, yield as well as its physiological and anatomical characteristics. Canola plants were grown under greenhouse conditions in plastic pots and were exposed to 100 mM NaCl. At 50 and 70 days from sown, plants were sprayed with SNP (50 and 100 µM) solutions under normal or salinity condition. Growth and yield characters as well as some biochemical and anatomical changes were investigated under the experimental conditions. Salinity stress caused an extremely vital decline in plant growth and yield components. A significant increase was found in membrane permeability, lipid peroxidation, hydrogen peroxide, sodium, chloride, proline, soluble sugars, ascorbic and phenol in canola plants under salinity stress. Under normal conditions, SNP application significantly increased all studies characters, except sodium, chloride, hydrogen peroxide, lipid peroxidation, membrane permeability that markedly reduced. Application of SNP to salt-affected plants mitigated the injuries of salinity on plant growth, yield, and improved anatomical changes. The present investigation demonstrated that SNP has the potential to alleviate the salinity injurious on canola plants.


Sign in / Sign up

Export Citation Format

Share Document