scholarly journals Exogenous acylated ghrelin promotes but un-acylated ghrelin prevents hepatic steatosis by modulating peripheral insulin resistance and hepatic oxidative and endoplasmic reticulum stress

2021 ◽  
Vol 7 (3) ◽  

Objectives: This study tested the effects of acylated (AG and un-acylated ghrelin (UAG) on hepatic lipid synthesis and insulin resistance (IR) from prospective to their effect on endoplasmic reticulum stress and investigated the possible underlying mechanisms. Methods: Healthy rats were divided as 4 groups (n=12/each) as control, control + AG, control + UAG, and control + AG + UAG (1:1). GA or UAG were given subcutaneously (200 ng/kg/each) for 8 weeks. Results: AG increased fasting levels of glucose and insulin resistance, increased hepatic glucose production, and impaired glucose and insulin tolerance. Besides, it increased serum levels of free fatty acids (FFAs), enhanced serum and hepatic levels of triglycerides and cholesterol, and increased lipid deposition in the livers of rats. Concomitantly, it stimulated the mRNA levels of SREBP1/2, fatty acid synthase, and protein levels of all arms of ER stress including Xbp-1, CHOP, ATF-6, and p-eIF2α, thus activating lipid synthesis and ER stress. It also reduced protein levels of p-IRS (Tyr612), p-Akt (Ser307), and increased levels of ROS, TNF-α, IL-6, and protein levels of cleaved caspase-12, p-IRS (Ser307), and p-JNK (The183/Tyr186) in rats’ livers. Administration of UAG alone or in combination with AG produced contradictory effects. However, both AG and UAG significantly increased mRNA levels of AMPK and PPARα suggesting FAs oxidation. Conclusion: AG induces hepatic steatosis and suppresses hepatic insulin signaling mainly by inducing peripheral IR that is associated with hepatic oxidative stress, inflammation, and ER stress. However, UAG alone or in combination exerts opposite effects.

2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Chang-Ming Lv ◽  
Hui-Mei Wu ◽  
Ling Wu ◽  
Guang-Hong Xu ◽  
Zhi-Lai Yang ◽  
...  

Abstract Sevoflurane was found to show protective roles in mice with asthma, however, the mechanism of which needs further exploring. Aquaporins (AQPs) have been demonstrated to be involved in the pathogenesis of asthma, while endoplasmic reticulum stress has been reported to be related to many inflammatory diseases and involved in protein processing, including AQPs. The present study aimed to determine the role of sevoflurane in AQPs (AQP1,3,4,5) expression in mice with allergic airway inflammation and the probable mechanism. The increased number of inflammatory cells infiltrating the lung tissue, and the elevated levels of tumor necrosis factor-α (TNF-α) and interleukin (IL) 13 (IL-13) were all decreased after sevoflurane treatment (all P<0.05). Meanwhile, mRNA levels of AQP1 and AQP5 but not AQP3 and AQP4 were decreased in ovalbumin (OVA)-induced allergic mice lung. Both the decreased mRNA expression and protein levels of AQP1 and AQP5 in allergic lung tissues were reversed by sevoflurane treatment. Furthermore, we established that sevoflurane inhibited the OVA-induced protein increase in the endoplasmic reticulum (ER) stress markers BiP and C/EBP homologous protein (CHOP). Collectively, these findings suggested that sevoflurane modulated the expression and protein level of AOPs (AQP1, AQP5) as well as inhibited ER stress response in OVA-induced allergic airway inflammation of mice.


Dose-Response ◽  
2018 ◽  
Vol 16 (4) ◽  
pp. 155932581881063 ◽  
Author(s):  
Jiangang Cao ◽  
Yu Zhang ◽  
Tianyi Wang ◽  
Bo Li

Osteoarthritis (OA) affects elderly population worldwide and endoplasmic reticulum (ER) stress is known to be positively correlated with OA development. Previous reports prove the cytoprotective effects of baicalin on chondrocytes, whereas the mechanisms are hardly reported. Hence, we aimed to investigate the links between OA, ER stress, and baicalin. Chondrocytes from patients with OA were subjected to H2O2 treatment with or without baicalin pretreatment, and cell viability was assessed via Cell Counting Kit-8. Messenger RNA (mRNA) amounts of apoptosis-related genes (Bax, Bcl-2, and Caspase-3), extracellular matrix (ECM)-related genes (Collange I, Collange II, Aggrecan, and Sox9) and ER stress hallmarks (binding immunoglobulin protein [BiP] C/EBP homologous protein [CHOP]) were evaluated via quantitative real-time PCR. Bax, Bcl-2, BiP, and CHOP protein levels were analyzed via Western blot. Baicalin suppressed the changes in cell viability and apoptosis-related gene expressions caused by H2O2. Reactive oxygen species and glutathione/oxidized glutathione assay showed that H2O2 enhanced oxidative stress. Baicalin suppressed H2O2-induced downregulation of mRNA expression of ECM-related genes. Moreover, baicalin reduced H2O2-stimulated increase in oxidative stress and the expression of ER stress hallmarks. Endoplasmic reticulum stress inducer abolished the protective activities, whereas ER stress inhibitor did not exhibit extra protective effects. Baicalin pretreatment protected patient-derived chondrocytes from H2O2 through ER stress inhibition.


2017 ◽  
Vol 8 (4) ◽  
pp. 1481-1493 ◽  
Author(s):  
Wenqi Yang ◽  
Xu Chen ◽  
Ming Chen ◽  
Yanping Li ◽  
Qing Li ◽  
...  

ER stress inhibition through AMPK activation may explain the protective effects of fish oil against HFD-induced insulin resistance.


Toxins ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 107 ◽  
Author(s):  
Dandan Zhang ◽  
Wang Lin ◽  
Yinjie Liu ◽  
Honghui Guo ◽  
Lingkai Wang ◽  
...  

In order to explore effects of low levels of continuous microcystin-LR (MC-LR) (a cyanotoxin) exposure on hepatic lipid metabolism on the basis of the endoplasmic reticulum stress (ERS) pathway, we exposed adult male zebrafish to MC-LR (0, 1, 5, and 25 μg/L) for 60 days, and hepatic histopathology as well as lipid metabolic parameters were determined with mRNA levels of ERS signal molecules and downstream factors, along with genes associated with lipid metabolism in zebrafish liver. The results revealed that prolonged exposure to MC-LR remarkably altered the levels of hepatic total cholesterol and triglyceride and led to hepatic steatosis, which was also confirmed by hepatic cytoplasmic vacuolization in Hematoxylin/eosin (H&E) stain and lipid droplet accumulation in Oil Red O stain. The severity of hepatic damage and lipidation was increased in a dose-related manner. MC-LR exposure significantly upregulated transcriptional levels of ERS markers including hspa5, mapk8, and chop, indicating the occurrence of ERS in the liver of zebrafish. Concurrently, MC-LR significantly improved mRNA expression of unfolded protein response (UPR) pathway-related genes including atf6, eif2ak3, ern1, and xbp1s, suggesting that all of the three UPR branches were activated by MC-LR. MC-LR also induced significant upregulation of downstream lipid metabolism-related factors and genes including srebf1, srebf2, fatty acid synthase (fasn), acetyl-CoA carboxylase (acaca), stearoyl-CoA desaturase (scd), HMG CoA reductase (hmgcra), and HMG CoA synthase (hmgcs1), and downregulation of genes associated with lipolysis such as triglyceride hydrolase gene (atgl), hormone-sensitive enzyme gene (hsla), and carnitine palmitoyltransferase gene (cpt1aa). Our present results indicated that the cause of hepatic lipid accumulation by MC-LR was mainly by upregulating lipogenic and cholesterol genes but downregulating the expression of lipolytic genes through the induction of srebf1 and srebf2, which were involved in the activation of ERS signal pathways.


2012 ◽  
Vol 303 (1) ◽  
pp. G54-G59 ◽  
Author(s):  
Anne S. Henkel ◽  
Amanda M. Dewey ◽  
Kristy A. Anderson ◽  
Shantel Olivares ◽  
Richard M. Green

Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of nonalcoholic steatohepatitis. The ER stress response is activated in the livers of mice fed a methionine- and choline-deficient (MCD) diet, yet the role of ER stress in the pathogenesis of MCD diet-induced steatohepatitis is unknown. Using chemical chaperones on hepatic steatosis and markers of inflammation and fibrosis in mice fed a MCD diet, we aim to determine the effects of reducing ER stress. C57BL/6J mice were fed a MCD diet with or without the ER chemical chaperones 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) for 2 wk. TUDCA and PBA effectively attenuated the ER stress response in MCD diet-fed mice, as evidenced by reduced protein levels of phosphorylated eukaryotic initiation factor 2α and phosphorylated JNK and suppression of mRNA levels of CCAAT/enhancer binding protein homologous protein, glucose-regulated protein 78 kDa, and X-box binding protein 1. However, PBA and TUDCA did not decrease MCD diet-induced hepatic steatosis. MCD diet-induced hepatic inflammation, as evidenced by increased plasma alanine aminotransferase and induction of hepatic TNFα expression, was also not reduced by PBA or TUDCA. PBA and TUDCA did not attenuate MCD diet-induced upregulation of the fibrosis-associated genes tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9. ER chemical chaperones reduce MCD diet-induced ER stress, yet they do not improve MCD diet-induced hepatic steatosis, inflammation, or activation of genes associated with fibrosis. These data suggest that although the ER stress response is activated by the MCD diet, it does not have a primary role in the pathogenesis of MCD diet-induced steatohepatitis.


2008 ◽  
Vol 295 (6) ◽  
pp. E1369-E1379 ◽  
Author(s):  
Yongjie Ma ◽  
Leyuan Xu ◽  
Daniel Rodriguez-Agudo ◽  
Xiaobo Li ◽  
Douglas M. Heuman ◽  
...  

The oxysterol receptor LXR is a key transcriptional regulator of lipid metabolism. LXR increases expression of SREBP-1, which in turn regulates at least 32 genes involved in lipid synthesis and transport. We recently identified 25-hydroxycholesterol-3-sulfate (25HC3S) as an important regulatory molecule in the liver. We have now studied the effects of 25HC3S and its precursor, 25-hydroxycholesterol (25HC), on lipid metabolism as mediated by the LXR/SREBP-1 signaling in macrophages. Addition of 25HC3S to human THP-1-derived macrophages markedly decreased nuclear LXR protein levels. 25HC3S administration was followed by dose- and time-dependent decreases in SREBP-1 mature protein and mRNA levels. 25HC3S decreased the expression of SREBP-1-responsive genes, acetyl-CoA carboxylase-1, and fatty acid synthase (FAS) as well as HMGR and LDLR, which are key proteins involved in lipid metabolism. Subsequently, 25HC3S decreased intracellular lipids and increased cell proliferation. In contrast to 25HC3S, 25HC acted as an LXR ligand, increasing ABCA1, ABCG1, SREBP-1, and FAS mRNA levels. In the presence of 25HC3S, 25HC, and LXR agonist T0901317, stimulation of LXR targeting gene expression was repressed. We conclude that 25HC3S acts in macrophages as a cholesterol satiety signal, downregulating cholesterol and fatty acid synthetic pathways via inhibition of LXR/SREBP signaling. A possible role of oxysterol sulfation is proposed.


Hepatology ◽  
2015 ◽  
Vol 62 (1) ◽  
pp. 135-146 ◽  
Author(s):  
Su-Yeon Lee ◽  
In-Kyung Hong ◽  
Bo-Rahm Kim ◽  
Soon-Mi Shim ◽  
Jae Sung Lee ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yi-Ming Li ◽  
Shao-Yang Zhao ◽  
Huan-Huan Zhao ◽  
Bao-Hua Wang ◽  
Sai-Mei Li

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome featuring ectopic lipid accumulation in hepatocytes. NAFLD has been a severe threat to humans with a global prevalence of over 25% yet no approved drugs for the treatment to date. Previous studies showed that procyanidin B2 (PCB2), an active ingredient from herbal cinnamon, has an excellent hepatoprotective effect; however, the mechanism remains inconclusive. The present study aimed to investigate the protective effect and underlying mechanism of PCB2 on PA-induced cellular injury in human hepatoma HepG2 cells. Our results showed that PA-induced oxidative stress, calcium disequilibrium, and subsequent endoplasmic reticulum stress (ERS) mediated cellular injury, with elevated protein levels of GRP78, GRP94, CHOP, and hyperphosphorylation of PERK and IRE1α as well as the increased ratio of Bax/Bcl-2, which was restored by PCB2 in a concentration-dependent manner, proving the excellent antiapoptosis effect. In addition, 4-phenylbutyric acid (4-PBA), the ER stress inhibitor, increased cell viability and decreased protein levels of GRP78 and CHOP, which is similar to PCB2, and thapsigargin (TG), the ER stress agonist, exhibited conversely meanwhile partly counteracted the hepatic protection of PCB2. What is more, upregulated protein expression of p-IKKα/β, p-NF-κB p65, NLRP3, cleaved caspase 1, and mature IL-1β occurred in HepG2 cells in response to PA stress while rescued with the PCB2 intervention. In conclusion, our study demonstrated that PA induces ERS in HepG2 cells and subsequently activates downstream NLRP3 inflammasome-mediated cellular injury, while PCB2 inhibits NLRP3/caspase 1/IL-1β pathway, inflammation, and apoptosis with the presence of ERS, thereby promoting cell survival, which may provide pharmacological evidence for clinical approaches on NAFLD.


Sign in / Sign up

Export Citation Format

Share Document