scholarly journals High performance 4D tracking with 100% fill-factor and very fine pitch silicon detectors

2020 ◽  
Author(s):  
Marco Mandurrino ◽  
Federico Siviero ◽  
Nicolo Cartiglia ◽  
Marta Tornago ◽  
Marco Ferrero ◽  
...  
2014 ◽  
Vol 2 (15) ◽  
pp. 5427-5433 ◽  
Author(s):  
Shugang Li ◽  
Zhongcheng Yuan ◽  
Jianyu Yuan ◽  
Ping Deng ◽  
Qing Zhang ◽  
...  

An expanded isoindigo unit (IBTI) has been incorporated into a donor–acceptor conjugated polymer for the first time. The PCE of the solar cell device based on the new polymer reached 6.41% with a fill factor of 0.71.


2011 ◽  
Vol 121-126 ◽  
pp. 4229-4233
Author(s):  
Ping Chuan Zhang ◽  
Yun Long Kong ◽  
Hang Sen Zhang

This paper design an intelligent photovoltaic cell test system. The high performance dual-core 16bits SPCE061A microprocessors are used as control and data processing center. The powerful data operation ability of SPCE061A makes it to carry out software filter for measured data and enhances testing precision. the experiments demonstrated the test system can measure the characteristic parameters of photovoltaic cells: open voltage, current, the fill factor and photoelectric conversion efficiency, draw photovoltaic cells I-V curve, find the best working points , and also have the characteristics of miniaturization and intelligent.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001531-001563
Author(s):  
Arnd Kilian ◽  
Gustavo Ramos ◽  
Rick Nichols ◽  
Robin Taylor ◽  
Vanessa Smet ◽  
...  

One constant in electronic system integration is the continuous trend towards smaller devices with increased functionality, driven by emerging mobile and high-performance applications. This brings the need for higher bandwidth at lower power, translating into increased I/O density, to enable highly-integrated systems with form factor reduction. These requirements result in the necessity of interconnection pitch-scaling, below 30 μm in the near future, and substrates with high wiring densities, leading to routing with sub 5 μm L/S where standard surface finishes (ENIG, ENEPIG) are no longer applicable. Copper pillar with solder caps technology is currently the prevalent solution for off-chip interconnections at fine pitch, dominating the high performance and mobile market with pitches as low as 40 μm in production. However, this technology faces many fundamental limitations in pitch scaling below 30 μm, due to solder bridging, IMC-solder interfacial stress management, and poor power handling capability of solders. All-copper interconnections without solder are very sought after by the semiconductor industry and have been applied to 3D-IC stacking, however no cost effective, manufacturable and scalable solution has been proposed to date for HVM and application to non CTE matched package structures. The low temperature Cu-Cu interconnection technology without solder recently patented by Georgia Tech PRC is one of the most promising solutions to this problem. The main bottleneck of copper oxidation is dealt with by application of ENIG on the Cu bumps and pads, enabling formation of a reliable metallurgical bond by thermocompression bonding (TCB) at temperatures below 200°C, in air, with cycle-times compatible with HVM targets. However, to ensure a bump collapse of 3 μm to overcome non-coplanarities and warpage, a pressure of 300MPa is used in the Process-of-Record (PoR) conditions, limiting the scalability of this technology. This paper introduces a novel Electroless Palladium / Autocatalytic Gold (EPAG) surface finish process, to enable the next generation of high density substrates and interconnections. With circa 100nm-thin Pd and Au layers, the EPAG finish can be applied to fine L/S wiring, with no risk of bridging adjacent Cu traces, even with spacing below 5 μm. Further, the EPAG finish is compatible with current interconnection processes; such as wire bonding, and the Cu pillar and solder cap technology for fine-pitch applications. For further pitch reduction, the EPAG surface finish was coupled to GT PRC's low-temperature Cu-interconnections, in an effort to reduce the bonding load for enhanced manufacturability without degrading the metallurgical bond or reliability. This paper is the first demonstration of such interconnections. The effect of the surface finish thickness and composition on the bonding load, assembly yield, quality of the metallurgical bond was extensively evaluated based on analysis of the metal interface microstructures and the chemical composition of the joints. The current PoR using Electroless Nickel / Immersion Gold (ENIG) coated Cu pillars and pads was used as reference. A novel surface finish is introduced, which allows formation of Cu-Cu interconnections without solder at lower pressure, between a silicon die and glass, organic or silicon substrate at fine pitch, allowing the performance improvements demanded by the IC Packaging Industry.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001137-001142 ◽  
Author(s):  
Ilyas Mohammed

For low power processors, stacking memory on top offers many advantages such as high performance due to memory-processor interface within package, small footprint and standard assembly. Package-on-package (PoP) is preferred method of stacking as it offers two discrete packages that are tested separately and can be sourced independently. However, current PoP interconnect technologies do not efficiently scale to meet the memory bandwidth requirements for new generations of multi-core applications processors. The current interconnect technologies such as stacking with smaller sized solder balls, using solder filled laser drilled vias in the mold cap, or using organic interposers are not practically achieving the high IO requirements, since the aspect ratios of these interconnects are limited. To address the gap in PoP interconnect density, a wire bond based package stacking interconnect technology called Bond Via Array (BVA™) is presented that enables reduced pitch and a higher number of interconnects in the PoP perimeter stacking arrangement. The main technological challenges are identified and the research results explained. The three main challenges were forming free standing wire-bonds, molding the package while exposing the tips of the wire-bonds, and package stacking. The assembly results showed that the wire tips were within the desired positional accuracy and height, and the packages were stacked without any loss of yield. These results indicate that the BVA interconnect technology is promising for the very high density and fine pitch required for upcoming mobile computing systems.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000408-000413
Author(s):  
Y. Kawase ◽  
M. Ikemoto ◽  
M. Yamazaki ◽  
M. Sugiyama ◽  
H. Kiritani ◽  
...  

Three dimensional (3D) IC has been proposed for high performance and low power in recent years. Due to the narrow gap between stacked chips and fine pitch of bumps, new inter chip fill (ICF) which can be used for pre-applied ICF process is required. The heat generation of 3D-IC is higher than 2D, so that a high thermal conductive inter chip fill (HT-ICF) is simultaneously required to dissipate the heat from 3D-IC and for the purpose of pre-applied ICF and HT-ICF, highly active flux agent and thermal conductive materials such as filler and matrix have been called for at the same time. In this study, some kind of materials were prepared, synthesized and optimized for the HT-ICF, and we evaluated its characteristic and confirmed applicability to pre-applied joining for 3D-IC.


2017 ◽  
Vol 4 (12) ◽  
pp. 170980 ◽  
Author(s):  
Ya-Qiong Wang ◽  
Shou-Bin Xu ◽  
Jian-Guo Deng ◽  
Li-Zhen Gao

The interfacial compatibility between compact TiO 2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO 2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO 2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO 2 surface, form a perfect CH 3 NH 3 PbI 3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO 2 /perovskite interface that can be greatly beneficial for developing high-performance PSCs.


2019 ◽  
Vol 40 (11) ◽  
pp. 1780-1783 ◽  
Author(s):  
Marco Mandurrino ◽  
F. Siviero ◽  
M. Tornago ◽  
R. Arcidiacono ◽  
M. Boscardin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document