Advances in Fine Pitch Off-Chip Interconnections Through the Use of a Novel Surface Finish

2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001531-001563
Author(s):  
Arnd Kilian ◽  
Gustavo Ramos ◽  
Rick Nichols ◽  
Robin Taylor ◽  
Vanessa Smet ◽  
...  

One constant in electronic system integration is the continuous trend towards smaller devices with increased functionality, driven by emerging mobile and high-performance applications. This brings the need for higher bandwidth at lower power, translating into increased I/O density, to enable highly-integrated systems with form factor reduction. These requirements result in the necessity of interconnection pitch-scaling, below 30 μm in the near future, and substrates with high wiring densities, leading to routing with sub 5 μm L/S where standard surface finishes (ENIG, ENEPIG) are no longer applicable. Copper pillar with solder caps technology is currently the prevalent solution for off-chip interconnections at fine pitch, dominating the high performance and mobile market with pitches as low as 40 μm in production. However, this technology faces many fundamental limitations in pitch scaling below 30 μm, due to solder bridging, IMC-solder interfacial stress management, and poor power handling capability of solders. All-copper interconnections without solder are very sought after by the semiconductor industry and have been applied to 3D-IC stacking, however no cost effective, manufacturable and scalable solution has been proposed to date for HVM and application to non CTE matched package structures. The low temperature Cu-Cu interconnection technology without solder recently patented by Georgia Tech PRC is one of the most promising solutions to this problem. The main bottleneck of copper oxidation is dealt with by application of ENIG on the Cu bumps and pads, enabling formation of a reliable metallurgical bond by thermocompression bonding (TCB) at temperatures below 200°C, in air, with cycle-times compatible with HVM targets. However, to ensure a bump collapse of 3 μm to overcome non-coplanarities and warpage, a pressure of 300MPa is used in the Process-of-Record (PoR) conditions, limiting the scalability of this technology. This paper introduces a novel Electroless Palladium / Autocatalytic Gold (EPAG) surface finish process, to enable the next generation of high density substrates and interconnections. With circa 100nm-thin Pd and Au layers, the EPAG finish can be applied to fine L/S wiring, with no risk of bridging adjacent Cu traces, even with spacing below 5 μm. Further, the EPAG finish is compatible with current interconnection processes; such as wire bonding, and the Cu pillar and solder cap technology for fine-pitch applications. For further pitch reduction, the EPAG surface finish was coupled to GT PRC's low-temperature Cu-interconnections, in an effort to reduce the bonding load for enhanced manufacturability without degrading the metallurgical bond or reliability. This paper is the first demonstration of such interconnections. The effect of the surface finish thickness and composition on the bonding load, assembly yield, quality of the metallurgical bond was extensively evaluated based on analysis of the metal interface microstructures and the chemical composition of the joints. The current PoR using Electroless Nickel / Immersion Gold (ENIG) coated Cu pillars and pads was used as reference. A novel surface finish is introduced, which allows formation of Cu-Cu interconnections without solder at lower pressure, between a silicon die and glass, organic or silicon substrate at fine pitch, allowing the performance improvements demanded by the IC Packaging Industry.

2021 ◽  
Vol 11 (20) ◽  
pp. 9444
Author(s):  
Yoonho Kim ◽  
Seungmin Park ◽  
Sarah Eunkyung Kim

Low-temperature Cu-Cu bonding technology plays a key role in high-density and high-performance 3D interconnects. Despite the advantages of good electrical and thermal conductivity and the potential for fine pitch patterns, Cu bonding is vulnerable to oxidation and the high temperature of the bonding process. In this study, chip-level Cu bonding using an Ag nanofilm at 150 °C and 180 °C was studied in air, and the effect of the Ag nanofilm was investigated. A 15-nm Ag nanofilm prevented Cu oxidation prior to the Cu bonding process in air. In the bonding process, Cu diffused rapidly to the bonding interface and pure Cu-Cu bonding occurred. However, some Ag was observed at the bonding interface due to the short bonding time of 30 min in the absence of annealing. The shear strength of the Cu/Ag-Ag/Cu bonding interface was measured to be about 23.27 MPa, with some Ag remaining at the interface. This study demonstrated the good bonding quality of Cu bonding using an Ag nanofilm at 150 °C.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


Solar RRL ◽  
2021 ◽  
pp. 2100108
Author(s):  
Shih-Chi Yang ◽  
Jordi Sastre ◽  
Maximilian Krause ◽  
Xiaoxiao Sun ◽  
Ramis Hertwig ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Naqi ◽  
Kyung Hwan Choi ◽  
Hocheon Yoo ◽  
Sudong Chae ◽  
Bum Jun Kim ◽  
...  

AbstractLow-temperature-processed semiconductors are an emerging need for next-generation scalable electronics, and these semiconductors need to feature large-area fabrication, solution processability, high electrical performance, and wide spectral optical absorption properties. Although various strategies of low-temperature-processed n-type semiconductors have been achieved, the development of high-performance p-type semiconductors at low temperature is still limited. Here, we report a unique low-temperature-processed method to synthesize tellurium nanowire networks (Te-nanonets) over a scalable area for the fabrication of high-performance large-area p-type field-effect transistors (FETs) with uniform and stable electrical and optical properties. Maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. To further demonstrate the applicability of the proposed semiconductor, the electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.


2021 ◽  
Vol 412 ◽  
pp. 127034
Author(s):  
Yang Yu ◽  
Zhuoya Ren ◽  
Qianqian Shang ◽  
Jiangang Han ◽  
Lei Li ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1738
Author(s):  
Saeid Vafaei ◽  
Alexander Wolosz ◽  
Catlin Ethridge ◽  
Udo Schnupf ◽  
Nagisa Hattori ◽  
...  

SnO2 nanoparticles are regarded as attractive, functional materials because of their versatile applications. SnO2 nanoaggregates with single-nanometer-scale lumpy surfaces provide opportunities to enhance hetero-material interfacial areas, leading to the performance improvement of materials and devices. For the first time, we demonstrate that SnO2 nanoaggregates with oxygen vacancies can be produced by a simple, low-temperature sol-gel approach combined with freeze-drying. We characterize the initiation of the low-temperature crystal growth of the obtained SnO2 nanoaggregates using high-resolution transmission electron microscopy (HRTEM). The results indicate that Sn (II) hydroxide precursors are converted into submicrometer-scale nanoaggregates consisting of uniform SnO2 spherical nanocrystals (2~5 nm in size). As the sol-gel reaction time increases, further crystallization is observed through the neighboring particles in a confined part of the aggregates, while the specific surface areas of the SnO2 samples increase concomitantly. In addition, X-ray photoelectron spectroscopy (XPS) measurements suggest that Sn (II) ions exist in the SnO2 samples when the reactions are stopped after a short time or when a relatively high concentration of Sn (II) is involved in the corresponding sol-gel reactions. Understanding this low-temperature growth of 3D SnO2 will provide new avenues for developing and producing high-performance, photofunctional nanomaterials via a cost-effective and scalable method.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd6978 ◽  
Author(s):  
Jingxin Zhao ◽  
Hongyu Lu ◽  
Yan Zhang ◽  
Shixiong Yu ◽  
Oleksandr I. Malyi ◽  
...  

Coaxial fiber-shaped supercapacitors with short charge carrier diffusion paths are highly desirable as high-performance energy storage devices for wearable electronics. However, the traditional approaches based on the multistep fabrication processes for constructing the fiber-shaped energy device still encounter persistent restrictions in fabrication procedure, scalability, and mechanical durability. To overcome this critical challenge, an all-in-one coaxial fiber-shaped asymmetric supercapacitor (FASC) device is realized by a direct coherent multi-ink writing three-dimensional printing technology via designing the internal structure of the coaxial needles and regulating the rheological property and the feed rates of the multi-ink. Benefitting from the compact coaxial structure, the FASC device delivers a superior areal energy/power density at a high mass loading, and outstanding mechanical stability. As a conceptual exhibition for system integration, the FASC device is integrated with mechanical units and pressure sensor to realize high-performance self-powered mechanical devices and monitoring systems, respectively.


Sign in / Sign up

Export Citation Format

Share Document