scholarly journals Stim: a fast stabilizer circuit simulator

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 497
Author(s):  
Craig Gidney

This paper presents “Stim", a fast simulator for quantum stabilizer circuits. The paper explains how Stim works and compares it to existing tools. With no foreknowledge, Stim can analyze a distance 100 surface code circuit (20 thousand qubits, 8 million gates, 1 million measurements) in 15 seconds and then begin sampling full circuit shots at a rate of 1 kHz. Stim uses a stabilizer tableau representation, similar to Aaronson and Gottesman's CHP simulator, but with three main improvements. First, Stim improves the asymptotic complexity of deterministic measurement from quadratic to linear by tracking the inverse of the circuit's stabilizer tableau. Second, Stim improves the constant factors of the algorithm by using a cache-friendly data layout and 256 bit wide SIMD instructions. Third, Stim only uses expensive stabilizer tableau simulation to create an initial reference sample. Further samples are collected in bulk by using that sample as a reference for batches of Pauli frames propagating through the circuit.

TAPPI Journal ◽  
2016 ◽  
Vol 15 (11) ◽  
pp. 731-738 ◽  
Author(s):  
KARITA KINNUNEN-RAUDASKOSKI ◽  
KRISTIAN SALMINEN ◽  
JANI LEHMONEN ◽  
TUOMO HJELT

Production cost savings by lowering basis weight has been a trend in papermaking. The strategy has been to decrease the amount of softwood kraft pulp and increase use of fillers and recycled fibers. These changes have a tendency to lower strength properties of both the wet and dry web. To compensate for the strength loss in the paper, a greater quantity of strength additives is often required, either dosed at the wet end or applied to the wet web by spray. In this pilot-scale study, it was shown how strength additives can be effectively applied with foam-based application technology. The technology can simultaneously increase dryness after wet pressing and enhance dry and wet web strength properties. Foam application of polyvinyl alcohol (PVA), ethylene vinyl alcohol (EVOH), carboxymethyl cellulose (CMC), guar gum, starch, and cellulose microfibrils (CMF) increased web dryness after wet pressing up to 5.2%-units compared to the reference sample. The enhanced dewatering with starch, guar gum, and CMF was detected with a bulk increase. Additionally, a significant increase in z-directional tensile strength of dry web and and in-plane tensile strength properties of wet web was obtained. Based on the results, foam application technology can be a very useful technology for several applications in the paper industry.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Valeria Caggiano ◽  
Teresa Redomero-Echeverría ◽  
Jose-Luis Poza-Lujan ◽  
Andrea Bellezza

Soft skills are important for any career and are necessary to access and face the labor market. This research focuses on soft skills by exploring engineer profiles. It also determines how soft skills are developed through the study of a representative sample of 314 undergraduate engineering students from 15 different Italian universities. The instrument used is a questionnaire that investigates soft skills and is based on the Business-focused Inventory of Personality (BIP). Answers are grouped into four areas: intrapersonal, interpersonal, activity development, and impression management. Results show that these engineers have more self-confidence than the reference sample; they demonstrated a great commitment in setting job goals and pursuing projects, a good emotional adaptation to social situations, and enough attitudes in terms of problem solving and openness to change. Perception on the ability to work under pressure is in the average, and they seem ready to take on challenging tasks. The score shows that engineers from the sample are able to express positive and negative ideas and feelings in balance with the reference average, but sometimes they have difficulties in establishing personal relationships. Therefore, they are unable to understand the moods of those who around them and may also have difficulty in understanding their expectations. This results in some difficulties in teamwork. The general result underlines the opportunity of empowerment programs regarding soft skills.


2017 ◽  
Author(s):  
Gabriel Marais ◽  
Rebecca Shankland ◽  
Pascale Haag ◽  
Robin Fiault ◽  
Bridget Juniper

In France, little data are available on mental health and well-being in academia, and nothing has been published about PhD students. From studies abroad, we know that doing a PhD is a difficult experience resulting in high attrition rates with significant financial and human costs. Here we focused on PhD students in biology at university Lyon 1. A first study aimed at measuring the mental health and well-being of PhD students using several generalist and PhD-specific tools. Our results on 136 participants showed that a large fraction of the PhD students experience abnormal levels of stress, depression and anxiety, and their mean well-being score is significantly lower than that of a British reference sample. French PhD student well-being is specifically affected by career uncertainty, perceived lack of progress in the PhD and perceived lack of competence, which points towards possible cultural differences of experiencing a PhD in France and the UK. In a second study, we carried out a positive psychology intervention. Comparing the scores of the test and control groups showed a clear effect of the intervention on reducing anxiety. We discuss our results and the possible future steps to improve French PhD students’ well-being.


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


2020 ◽  
Vol 4 (141) ◽  
pp. 157-163
Author(s):  
IL’YA ROMANOV ◽  
◽  
ROMAN ZADOROZHNIY

When applying coatings using various methods on the surfaces of moving parts that work in joints, it is important to make sure that the coatings are strong and wear-resistant in order to return them to their original resource. All existing hardening technologies and materials used to perform coatings have their own characteristics, therefore, the quality of the resulting coatings can be judged only after specific tests. (Research purpose) The research purpose is in evaluating the properties of the coating obtained by the method of electric spark hardening, and its ability to resist friction and mechanical wear. (Materials and methods) Authors conducted tests on the basis of the "Nano-Center" center for collective use. A coating was applied on the BIG-4M unit with a VK-8 hard alloy electrode, tribological properties were evaluated on a CSM Instruments TRB-S-DE-0000 tribometer, the width of the friction track was measured after the test using an inverted OLYMPUS gx51 optical microscope, and samples were weighed before and after the test on a VLR-200 analytical balance. Conducted research in accordance with GOST 23.224-86 and RD 50-662-88 guidelines. (Results and discussion) The article presents performed tests on the run-in and wear resistance of the coating. The samples were worked on with a step-by-step increase in the load. During the tests, the friction force was drawed on the diagram. Authors compared the results with the reference sample, an uncoated surface. (Conclusions) The resulting coating has better run-in and wear resistance compared to the standard, and the increase in wear resistance in dry friction conditions is very significant.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wendell Jones ◽  
Binsheng Gong ◽  
Natalia Novoradovskaya ◽  
Dan Li ◽  
Rebecca Kusko ◽  
...  

Abstract Background Oncopanel genomic testing, which identifies important somatic variants, is increasingly common in medical practice and especially in clinical trials. Currently, there is a paucity of reliable genomic reference samples having a suitably large number of pre-identified variants for properly assessing oncopanel assay analytical quality and performance. The FDA-led Sequencing and Quality Control Phase 2 (SEQC2) consortium analyze ten diverse cancer cell lines individually and their pool, termed Sample A, to develop a reference sample with suitably large numbers of coding positions with known (variant) positives and negatives for properly evaluating oncopanel analytical performance. Results In reference Sample A, we identify more than 40,000 variants down to 1% allele frequency with more than 25,000 variants having less than 20% allele frequency with 1653 variants in COSMIC-related genes. This is 5–100× more than existing commercially available samples. We also identify an unprecedented number of negative positions in coding regions, allowing statistical rigor in assessing limit-of-detection, sensitivity, and precision. Over 300 loci are randomly selected and independently verified via droplet digital PCR with 100% concordance. Agilent normal reference Sample B can be admixed with Sample A to create new samples with a similar number of known variants at much lower allele frequency than what exists in Sample A natively, including known variants having allele frequency of 0.02%, a range suitable for assessing liquid biopsy panels. Conclusion These new reference samples and their admixtures provide superior capability for performing oncopanel quality control, analytical accuracy, and validation for small to large oncopanels and liquid biopsy assays.


Author(s):  
Frank Ecker ◽  
Jennifer Francis ◽  
Per Olsson ◽  
Katherine Schipper

AbstractThis paper investigates how data requirements often encountered in archival accounting research can produce a data-restricted sample that is a non-random selection of observations from the reference sample to which the researcher wishes to generalize results. We illustrate the effects of non-random sampling on results of association tests in a setting with data on one variable of interest for all observations and frequently-missing data on another variable of interest. We develop and validate a resampling approach that uses only observations from the data-restricted sample to construct distribution-matched samples that approximate randomly-drawn samples from the reference sample. Our simulation tests provide evidence that distribution-matched samples yield generalizable results. We demonstrate the effects of non-random sampling in tests of the association between realized returns and five implied cost of equity metrics. In this setting, the reference sample has full information on realized returns, while on average only 16% of reference sample observations have data on cost of equity metrics. Consistent with prior research (e.g., Easton and Monahan The Accounting Review 80, 501–538, 2005), analysis using the unadjusted (non-random) cost of equity sample reveals weak or negative associations between realized returns and cost of equity metrics. In contrast, using distribution-matched samples, we find reliable evidence of the theoretically-predicted positive association. We also conceptually and empirically compare distribution-matching with multiple imputation and selection models, two other approaches to dealing with non-random samples.


2013 ◽  
Vol 48 (8) ◽  
pp. 283-284 ◽  
Author(s):  
Jun Liu ◽  
Wei Ding ◽  
Ohyoung Jang ◽  
Mahmut Kandemir

Sign in / Sign up

Export Citation Format

Share Document