scholarly journals EFEKTIVITAS KELAMBU BERINSEKTISIDA DALAM PENGENDALIAN VEKTOR MALARIA DI INDONESIA

SPIRAKEL ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 70-77
Author(s):  
Rizki Nurmaliani ◽  
Maya Arisanti

Malaria is still a health problem in several parts of Indonesia. National malaria elimination is targeted at 2030. One of the programs carried out by the government in malaria control to achieve elimination is the mass distribution and use of insecticide-treated mosquito nets. The use of insecticide-treated mosquito nets is one of the efforts to reduce malaria cases through vector control. Insecticide mosquito nets are recommended as a strategic step to break the chain of malaria transmission because the insecticide content in the treated fibers can kill mosquitoes. The data used in this paper is data on the percentage of mosquito mortality from the efficacy test of insecticide-treated mosquito nets to see the killing power of mosquito nets which is then used to assess the effectiveness of mosquito nets in vector control. The data were obtained from scientific studies of articles published in scientific journals. From the data collected, it is known that some insecticide-treated mosquito nets used by the community are effective in vector control, but some are no longer effective. The best period for using mosquito nets is less than 6 months by paying attention to the proper washing method so that insecticide-treated mosquito nets are still effective.

2021 ◽  
Vol 13 (1) ◽  
pp. 55-68
Author(s):  
Tri Wahono ◽  
Endang Puji Astuti ◽  
Andri Ruliansyah ◽  
Mara Ipa ◽  
Muhammad Umar Riandi

The government targets malaria elimination in Java and Bali by 2023. But until 2020, Pangandaran and Pandeglang Regency haven’t received malaria-free certification. This qualitative study was conducted to provide an overview of Pangandaran and Pandeglang malaria control implementation by comparing it to Activity Indicators based on the Indonesian Minister of Health Decree on malaria elimination. In-depth interviews, using thematically interview guidelines, were conducted to 48 key informants such as policyholders and people in charge of health programs and cross-sectoral at the provincial, district, sub-district, and village levels. Thematic analysis was used in the theme of policy implementation, budget, facilities and infrastructures, human resources, and cross-sector cooperation. The result shows that malaria control is implemented according to the decree, but some activities haven’t been done. The analysis on policy implementation theme shows that both districts have carried out according to the guidelines, with innovation in the form of establishing Posmaldes (village malaria post) in Ujung Kulon National Park in Pandeglang. APBD, APBN, and Global Fund are used as budget sources. Both districts stated that facilities and infrastructures are sufficiently available, but there is a lack in human resources’ quantity and varying degrees of competencies. There is also a lack of cross-sector cooperation because malaria control hasn’t become a priority in those sectors and they are only acting as supports to the health sector. Efforts to control malaria are considered less optimal due to the absence of malaria elimination regulations, varied human resource capabilities, and the limitation in the duties and functions of cross-sectors.


1947 ◽  
Vol 37 (4) ◽  
pp. 567-592 ◽  
Author(s):  
C. R. Ribbands

(1) Sprays that are atomised and mingled with air were unsuitable because they were wasteful in both material and labour.(2) Knapsack oilers and modified stirrup pumps were efficient. Where labour is cheap hand-operated sprayers of this type are more economical than motoroperated machines.(3) The relation between mosquito mortality and infectivity is discussed and it is calculated that any treatment which produces 75 per cent. mortality among the mosquitos exposed to it should effect malaria elimination.(4) The effects of a DDT emulsion were much more durable than those of a similar quantity of DDT in kerosene solution. The difference was much less marked when Gammexane was used. Emulsions will probably displace kerosene solutions as vehicles for the application of residual films.(5) The persistence of the effects of DDT was markedly increased by increased dosage, so that it will be most economical to apply DDT in heavy doses at long intervals.(6) The persistence of Gammexane effects was not greatly increased by increased dosage because it evaporates much more quickly than DDT. It is not likely to be effective for much longer than 10 weeks.(7) Treatments with DDT were usually effective against A. minimus for about twice as long as against A. vagus or Culicines, but treatments with Gammexane had similar effects on all species.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Harsh Rajvanshi ◽  
Praveen K. Bharti ◽  
Sekh Nisar ◽  
Himanshu Jayswar ◽  
Ashok K. Mishra ◽  
...  

Abstract Background Malaria Elimination Demonstration Project (MEDP) was started as a Public-Private-Partnership between the Indian Council of Medical Research through National Institute of Research in Tribal Health, Govt. of Madhya Pradesh and Foundation of Disease Elimination and Control of India, which is a Corporate Social Responsibility (CSR) initiative of the Sun Pharmaceutical Industries Limited. The project’s goal was to demonstrate that malaria can be eliminated from a high malaria endemic district along with prevention of re-establishment of malaria and to develop a model for malaria elimination using the lessons learned and knowledge acquired from the demonstration project. Methods The project employed tested protocols of robust surveillance, case management, vector control, and capacity building through continuous evaluation and training.  The model was developed using the learnings from the operational plan, surveillance and case management, monitoring and feedback, entomological investigations and vector control, IEC and capacity building, supply chain management, mobile application (SOCH), and independent reviews of MEDP. Results The MEDP has been operational since April 2017 with field operations from August 2017, and has observed: (1) reduction in indigenous cases of malaria by about 91 %; (2) need for training and capacity building of field staff for diagnosis and treatment of malaria; (3) need for improvement insecticide spraying and for distribution and usage of bed-nets; (4) need for robust surveillance system that captures and documents information on febrile cases, RDT positive individuals, and treatments provided; (5) need for effective supervision of field staff based on advance tour plan; (6) accountability and controls from the highest level to field workers; and (7) need for context-specific IEC. Conclusions Malaria elimination is a high-priority public health goal of the Indian Government with a committed deadline of 2030. In order to achieve this goal, built-in systems of accountability, ownership, effective management, operational, technical, and financial controls will be crucial components for malaria elimination in India. This manuscript presents a model for malaria elimination with district as an operational unit, which may be considered for malaria elimination in India and other countries with similar geography, topography, climate, endemicity, health infrastructure, and socio-economic characteristics.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Harsh Rajvanshi ◽  
Sekh Nisar ◽  
Praveen K. Bharti ◽  
Himanshu Jayswar ◽  
Ashok K. Mishra ◽  
...  

Abstract Background The Malaria Elimination Demonstration Project (MEDP) maintained a workforce of 235 Village Malaria Workers (VMWs) and 25 Malaria Field Coordinators (MFCs) to conduct disease surveillance, case management, IEC/BCC activities, capacity building, and monitoring of vector control activities in 1233 villages of Mandla, a high malaria endemic district of Madhya Pradesh in central India. Methods The induction training was conducted for 3 days on malaria diagnosis, treatment, prevention, and ethics. All trainings were assessed using a pre and post-training assessment questionnaire, with 70% marks as qualifying threshold. The questionnaire was divided into three thematic areas viz. general knowledge related to malaria (KAP), diagnosis and treatment (DXRX), and vector control (PVC). Results In 2017, the project trained 330 candidates, followed by 243 and 247 candidates in 2018 and 2019, respectively. 94.3% candidates passed after a single training session. Almost all (95%) candidates showed improvement in knowledge after the training with 4% showing no effect and 1% showing deterioration. Progressive improvement in scores of 2017 cohort was seen along with significant improvement in performance of candidates in 2019 after the introduction of systematic monitoring and ‘shadowing’ training exercises. Conclusion The project has successfully demonstrated the value of recruitment of workers from the study area, outcome of training, and performance evaluation of field staff in malaria elimination programme. This careful strategy of recruitment and training resulted in a work-force that was capable of independently conducting surveillance, case management, vector control, and Information Education Communication/Behaviour Change Communication (IEC/BCC). The learnings of this study, including the training modules and monitoring processes, can be used to train the health delivery staff for achieving national goal for malaria elimination by 2030. Similar training and monitoring programmes could also be used for other public health delivery programmes.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Henry Ddumba Mawejje ◽  
Maxwell Kilama ◽  
Simon P. Kigozi ◽  
Alex K. Musiime ◽  
Moses Kamya ◽  
...  

Abstract Background Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. This study examined the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. Methods From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). Results In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18–0.65, p = 0.001), but not Anopheles gambiae sensu stricto (s.s.) nor Anopheles arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49–0.94, p = 0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002–0.009, p < 0.001), and An. funestus sensu lato (s.l.) (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005–0.004, p < 0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07–0.33, p < 0.001). Conclusions LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviourally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Micaela Finney ◽  
Benjamin A. McKenzie ◽  
Bernadette Rabaovola ◽  
Alice Sutcliffe ◽  
Ellen Dotson ◽  
...  

Abstract Background Malaria is a top cause of mortality on the island nation of Madagascar, where many rural communities rely on subsistence agriculture and livestock production. Understanding feeding behaviours of Anopheles in this landscape is crucial for optimizing malaria control and prevention strategies. Previous studies in southeastern Madagascar have shown that Anopheles mosquitoes are more frequently captured within 50 m of livestock. However, it remains unknown whether these mosquitoes preferentially feed on livestock. Here, mosquito blood meal sources and Plasmodium sporozoite rates were determined to evaluate patterns of feeding behaviour in Anopheles spp. and malaria transmission in southeastern Madagascar. Methods Across a habitat gradient in southeastern Madagascar 7762 female Anopheles spp. mosquitoes were collected. Of the captured mosquitoes, 492 were visibly blood fed and morphologically identifiable, and a direct enzyme-linked immunosorbent assay (ELISA) was used to test for swine, cattle, chicken, human, and dog blood among these specimens. Host species identification was confirmed for multiple blood meals using PCR along with Sanger sequencing. Additionally, 1,607 Anopheles spp. were screened for the presence of Plasmodium falciparum, P. vivax-210, and P. vivax 247 circumsporozoites (cs) by ELISA. Results Cattle and swine accounted, respectively, for 51% and 41% of all blood meals, with the remaining 8% split between domesticated animals and humans. Of the 1,607 Anopheles spp. screened for Plasmodium falciparum, Plasmodium vivax 210, and Plasmodium vivax 247 cs-protein, 45 tested positive, the most prevalent being P. vivax 247, followed by P. vivax 210 and P. falciparum. Both variants of P. vivax were observed in secondary vectors, including Anopheles squamosus/cydippis, Anopheles coustani, and unknown Anopheles spp. Furthermore, evidence of coinfection of P. falciparum and P. vivax 210 in Anopheles gambiae sensu lato (s.l.) was found. Conclusions Here, feeding behaviour of Anopheles spp. mosquitoes in southeastern Madagascar was evaluated, in a livestock rich landscape. These findings suggest largely zoophagic feeding behaviors of Anopheles spp., including An. gambiae s.l. and presence of both P. vivax and P. falciparum sporozoites in Anopheles spp. A discordance between P. vivax reports in mosquitoes and humans exists, suggesting high prevalence of P. vivax circulating in vectors in the ecosystem despite low reports of clinical vivax malaria in humans in Madagascar. Vector surveillance of P. vivax may be relevant to malaria control and elimination efforts in Madagascar. At present, the high proportion of livestock blood meals in Madagascar may play a role in buffering (zooprophylaxis) or amplifying (zoopotentiation) the impacts of malaria. With malaria vector control efforts focused on indoor feeding behaviours, complementary approaches, such as endectocide-aided vector control in livestock may be an effective strategy for malaria reduction in Madagascar.


Author(s):  
Daddi Jima ◽  
Gezagegn Tasfaye ◽  
Wakgari Deressa ◽  
Adugna Woyessa ◽  
Daniel Kebede ◽  
...  

2021 ◽  
Author(s):  
Abebe Asale ◽  
Zewdu Abro ◽  
Bayu Enchalew ◽  
Alayu Tesager ◽  
Aklilu Belay ◽  
...  

Abstract Background: Key program components of malaria control in Ethiopia include community empowerment and mobilization, vector control using long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), prompt diagnosis and treatment, and disease surveillance. However, the effectiveness of these interventions is often undermined by various challenges, including insecticide and drug resistance, the plasticity of malaria vectors feeding and biting behavior, and certain household factors that lead to misuse and poor utilization of LLINs. The primary objective of this study was to document households’ perceptions towards malaria and assess the prevalence of the disease and the constraints related to the ongoing interventions in Ethiopia (LLINs, IRS, community mobilization house screening). Method: The study was conducted in Jabi Tehnan district, Northwestern Ethiopi,a from November 2019 to March 2020. A total of 3,010 households distributed over 38 kebeles (villages) were randomly selected for socio-economic and demographic survey. Focus group discussions (FGDs) were conducted in 11 different health clusters taking into account agro-ecological differences. A total of 1,256 children under 10 years of age were screened for malaria parasites using microscopy in order to determine malaria prevalence. Furthermore, five-year malaria trend analysis was undertaken based on data obtained from the district health office to understand the disease dynamics.Result: Malaria knowledge in the area was high as all FGD participants correctly identified mosquito bites during the night as sources of malaria transmission. Delayed health seeking behavior remains a key behavioral challenge in malaria control as it took patients on average 4 days before reporting the case at the nearby health facility. On average households lost 2.53 working days per person-per malaria episode and theey spent US$ 18 per person perepisode. Out of the 1,256 randomly selected under 10 children tested for malaria parasites, 11 (0.89%) were found to be positive. Malaria disproportionately affected the adult segment of the population more, 50% of the total cases reported from households whose age was 15 and beyond. The second most affected group was the age group between 5 and 14 years followed by children under 10, with 31% and 14% burden,respectively.Conclusion: Despite the achievement of universal coverage in terms of LLINs access, utilization of vector control interventions in the area remained low.Using bed nets for unintended purposes remained a major challenge. Therefore, continued community education and communication work should be prioritised in the study area to bring about the desired behavioral changes.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Sarala K. Subbarao ◽  
Nutan Nanda ◽  
Manju Rahi ◽  
Kamaraju Raghavendra

AbstractIndia has committed to eliminate malaria by 2030. The national framework for malaria elimination released by the Government of India plans to achieve this goal through strategic planning in a phased manner. Since vector control is a major component of disease management and vector elimination, it requires a thorough understanding of the biology and bionomics of malaria vectors exhibiting definite distribution patterns in diverse ecosystems in the country. Although a wealth of information is available on these aspects, lesser-known data are on biting time and rhythm, and the magnitude of outdoor transmission by the vectors which are crucial for effective implementation of the key vector control interventions. Most of the data available for the vector species are at sensu lato level, while the major vectors are species complexes and their members distinctly differ in biological characters. Furthermore, the persistent use of insecticides in indoor residual spray and long-lasting insecticidal nets has resulted in widespread resistance in vectors and changes in their behaviour. In this document, challenges in vector control in the Indian context have been identified and possible solutions to overcome the problem are suggested. Adequate addressing of the issues raised would greatly help make a deep dent in malaria transmission and consequently result in disease elimination within the targeted time frame.


Sign in / Sign up

Export Citation Format

Share Document