scholarly journals 3D printing of self-standing and vascular supportive multi-material hydrogel structures for organ engineering

Author(s):  
Qingxi Hu ◽  
Suihong Liu ◽  
Haiguang Zhang ◽  
Zhipeng Shen ◽  
Sasirekha Krishnan ◽  
...  

Three dimensional printable formulation of self-standing and vascular-supportive structures using multi-materials suitable for organ engineering is of great importance and highly challengeable, but, it could advance the 3D printing scenario from printable shape to functional unit of human body. In this study, the authors report a 3D printable formulation of such self-standing and vascular-supportive structures using an in-house formulated multi-material combination of albumen/alginate/gelatin (A-SA-Gel)-based hydrogel. The rheological properties and relaxation behavior of hydrogels were analyzed prior to the printing process. The suitability of the hydrogel in 3D printing of various customizable and self-standing structures, including a human ear model, was examined by extrusion-based 3D printing. The structural, mechanical, and physicochemical properties of the printed scaffolds were studied systematically. Results supported the 3D printability of the formulated hydrogel with self-standing structures, which are customizable to a specific need. In vitro cell experiment showed that the formulated hydrogel has excellent biocompatibility and vascular supportive behavior with the extent of endothelial sprout formation when tested with human umbilical vein endothelial cells. In conclusion, the present study demonstrated the suitability of the extrusion-based 3D printing technique for manufacturing complex shapes and structures using multi-materials with high fidelity, which have great potential in organ engineering.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuhua Sun ◽  
Bingjun Zhang ◽  
Dong Zhai ◽  
Chengtie Wu

AbstractExosomes have attracted increasing attention in tissue regeneration and repair due to their roles in intercellular communication. Developing a customized delivery system is key to exosome-based regenerative therapeutics. Bioceramics play an important role in the immunomodulation of macrophages. Here, three-dimensional (3D) printing was applied to construct porous scaffolds with β-tricalcium phosphate (β-TCP) bioceramic-induced macrophage exosomes (BC-Exos). The three-dimensional-printed BC-Exo scaffolds, exhibiting a predefined structure and persistent release of exosomes, displayed distinct immunomodulatory effects and improved osteogenesis/angiogenesis. The BC-Exos in the printed scaffolds modulated macrophage polarization and the expression of chemokines for the recruitment of bone marrow mesenchymal stem cells (BMSCs) and endothelial cells. Scaffolds with BC-Exos from macrophages with a mixed phenotype significantly enhanced the osteogenic differentiation and immunosuppression of BMSCs and improved the angiogenic activity of human umbilical vein endothelial cells in vitro. For the potential mechanism, β-TCP bioceramics have an important effect on the immunomodulation of macrophages by regulating gene expression, increasing exosome production, and altering exosomal miRNA cargos, thereby affecting the paracrine effects of BC-Exos on immunomodulation and osteogenesis/angiogenesis. This study suggests that 3D printing of bioceramic-induced macrophage exosomes may be a useful strategy for tissue engineering and regenerative medicine.


2017 ◽  
Vol 33 (9) ◽  
pp. 592-599 ◽  
Author(s):  
Francesca Felice ◽  
Ester Belardinelli ◽  
Alessandro Frullini ◽  
Tatiana Santoni ◽  
Egidio Imbalzano ◽  
...  

Objectives Aminaphtone, a naphtohydrochinone used in the treatment of capillary disorders, may affect oedema in chronic venous insufficiency. Aim of study is to investigate the effect of aminaphtone on vascular endothelial permeability in vitro and its effects on three-dimensional capillary-like structures formed by human umbilical vein endothelial cells. Method Human umbilical vein endothelial cells were treated with 50 ng/ml VEGF for 2 h and aminaphtone for 6 h. Permeability assay, VE-cadherin expression and Matrigel assay were performed. Results VEGF-induced permeability was significantly decreased by aminaphtone in a range concentration of 1–20 µg/ml. Aminaphtone restored VE-cadherin expression. Finally, 6 h pre-treatment with aminaphtone significantly preserved capillary-like structures formed by human umbilical vein endothelial cells on Matrigel up to 48 h compared to untreated cells. Conclusions Aminaphtone significantly protects endothelium permeability and stabilises endothelial cells organised in capillary-like structures, modulating VE-cadherin expression. These data might explain the clinical benefit of aminaphtone on chronic venous insufficiency.


2002 ◽  
Vol 11 (4) ◽  
pp. 369-377 ◽  
Author(s):  
Makarand V. Risbud ◽  
Erdal Karamuk ◽  
René Moser ◽  
Joerg Mayer

Three-dimensional (3-D) scaffolds offer an exciting possibility to develop cocultures of various cell types. Here we report chitosan–collagen hydrogel-coated fabric scaffolds with defined mesh size and fiber diameter for 3-D culture of human umbilical vein endothelial cells (HUVECs). These scaffolds did not require pre-coating with fibronectin and they supported proper HUVEC attachment and growth. Scaffolds preserved endothelial cell-specific cobblestone morphology and cells were growing in compartments defined by the textile mesh. HUVECs on the scaffold maintained the property of contact inhibition and did not exhibit overgrowth until the end of in vitro culture (day 6). MTT assay showed that cells had preserved mitochondrial functionality. It was also noted that cell number on the chitosan-coated scaffold was lower than that of collagen-coated scaffolds. Calcein AM and ethidium homodimer (EtD-1) dual staining demonstrated presence of viable and metabolically active cells, indicating growth supportive properties of the scaffolds. Actin labeling revealed absence of actin stress fibers and uniform distribution of F-actin in the cells, indicating their proper attachment to the scaffold matrix. Confocal microscopic studies showed that HUVECs growing on the scaffold had preserved functionality as seen by expression of von Willebrand (vW) factor. Observations also revealed that functional HUVECs were growing at various depths in the hydrogel matrix, thus demonstrating the potential of these scaffolds to support 3-D growth of cells. We foresee the application of this scaffold system in the design of liver bioreactors wherein hepatocytes could be cocultured in parallel with endothelial cells to enhance and preserve liver-specific functions.


2014 ◽  
Vol 11 (101) ◽  
pp. 20141027 ◽  
Author(s):  
Weizhi Liu ◽  
Xiaocong Wang ◽  
Ke Bai ◽  
Miao Lin ◽  
Gleb Sukhorukov ◽  
...  

Microcapsules made of polyelectrolyte multilayers exhibit no or low toxicity, appropriate mechanical stability, variable controllable degradation and can incorporate remote release mechanisms triggered by various stimuli, making them well suited for targeted drug delivery to live cells. This study investigates interactions between microcapsules made of synthetic (i.e. polystyrenesulfonate sodium salt/polyallylamine hydrochloride) or natural (i.e. dextran sulfate/poly- l -arginine) polyelectrolyte and human umbilical vein endothelial cells with particular focus on the effect of the glycocalyx layer on the intake of microcapsules by endothelial cells. Neuraminidase cleaves N -acetyl neuraminic acid residues of glycoproteins and targets the sialic acid component of the glycocalyx on the cell membrane. Three-dimensional confocal images reveal that microcapsules, functionalized with neuraminidase, can be internalized by endothelial cells. Capsules without neuraminidase are blocked by the glycocalyx layer. Uptake of the microcapsules is most significant in the first 2 h. Following their internalization by endothelial cells, biodegradable DS/PArg capsules rupture by day 5; however, there is no obvious change in the shape and integrity of PSS/PAH capsules within the period of observation. Results from the study support our hypothesis that the glycocalyx functions as an endothelial barrier to cross-membrane movement of microcapsules. Neuraminidase-loaded microcapsules can enter endothelial cells by localized cleavage of glycocalyx components with minimum disruption of the glycocalyx layer and therefore have high potential to act as drug delivery vehicles to reach tissues beyond the endothelial barrier of blood vessels.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Liling Ren ◽  
Dongyang Ma ◽  
Bin Liu ◽  
Jinda Li ◽  
Jia Chen ◽  
...  

Engineering three-dimensional (3D) vascularized constructs remains a challenge due to the inability to form rich microvessel networks. In this study we engineered a prevascularized 3D cell sheet construct for tissue regeneration using human bone marrow-derived mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells as cell sources. hMSCs were cultured to form a thick cell sheet, and human umbilical vein endothelial cells (HUVECs) were then seeded on the hMSCs sheet to form networks. The single prevascularized HUVEC/hMSC cell sheet was folded to form a 3D construct by a modified cell sheet engineering technique.In vitroresults indicated that the hMSCs cell sheet promoted the HUVECs cell migration to form networks in horizontal and vertical directions.In vivoresults showed that many blood vessels grew into the 3D HUVEC/hMSC cell sheet constructs after implanted in the subcutaneous pocket of immunodeficient mice. The density of blood vessels in the prevascularized constructs was higher than that in the nonprevascularized constructs. Immunohistochemistry staining further showed thatin vitropreformed human capillaries in the prevascularized constructs anastomosed with the host vasculature to form functional blood vessels. These results suggest the promising potential of this 3D prevascularized construct using hMSCs cell sheet as a platform for wide applications in engineering vascularized tissues.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lianhua He ◽  
Qingxia Qin ◽  
Juan He ◽  
Han Wang ◽  
Yiping Hu ◽  
...  

ErMiao San (EMS) is composed of the Cortex Phellodendri chinensis and Atractylodes lancea, and it has the function of eliminating heat and excreting dampness in terms of traditional Chinese medicine to damp heat syndrome. Previous reports indicate that EMS possesses anti-inflammatory activity; however, its action on angiogenesis of rheumatoid arthritis (RA) has not been clarified. The present study aims to determine the antiangiogenic activity of EMS in collagen-induced arthritis (CIA) mice and in various angiogenesis models. Our data showed that EMS (5 g/kg) markedly reduced the immature blood vessels in synovial membrane tissues of inflamed joints from CIA mice. It also inhibited vascular endothelial growth factor (VEGF)-induced microvessel sprout formation ex vivo. Meanwhile, EMS suppressed VEGF-induced migration, invasion, adhesion, and tube formation of human umbilical vein endothelial cells (HUVECs). Moreover, EMS significantly reduced the expression of angiogenic activators including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) in synovium of CIA mice. More interestingly, EMS blocked the autophosphorylation of VEGF-induced JAK1, STAT1, and STAT6 in CIA mice and VEGF-induced HUVECs. These findings suggest for the first time that EMS possesses the antiangiogenic effect in RA in vivo, ex vivo, and in vitro by interrupting the targeting of JAK/STAT activation.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaokun Wang ◽  
Tong Hao ◽  
Jing Qu ◽  
Changyong Wang ◽  
Haifeng Chen

Alginate is a negative ionic polysaccharide that is found abundantly in nature. Calcium is usually used as a cross-linker for alginate. However, calcium cross-linked alginate is used only forin vitroculture. In the present work, alginate was modified with glycidyl methacrylate (GMA) to produce a thermal polymerizable alginate-GMA (AA-GMA) macromonomer. The molecular structure and methacrylation (%DM) of the macromonomer were determined by1H NMR. After mixing with the correct amount of initiator, the AA-GMA aqueous solution can be polymerized at physiological temperature. The AA-GMA hydrogels exhibited a three-dimensional porous structure with an average pore size ranging from 50 to 200 μm, directly depending on the macromonomer concentration. Biocompatibility of the AA-GMA hydrogel was determined byin vivomuscle injection and cell encapsulation. Muscle injectionin vivoshowed that the AA-GMA solution mixed with initiator could form a hydrogelin situand had a mild inflammatory effect. Human umbilical vein endothelial cells (HUVECs) were encapsulated in the AA-GMA hydrogelsin situat 37°C. Cell viability and proliferation were unaffected by macromonomer concentrations, which suggests that AA-GMA has a potential application in the field of tissue engineering, especially for myocardial repair.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 318
Author(s):  
Saeid Kargozar ◽  
Peiman Brouki Milan ◽  
Moein Amoupour ◽  
Farzad Kermani ◽  
Sara Gorgani ◽  
...  

The use of bioactive glasses (BGs) has been quite fruitful in hard tissue engineering due to the capability of these materials to bond to living bone. In this work, a melt-derived magnesium (Mg)-doped BG (composition: 45SiO2–3P2O5–26CaO–15Na2O–7MgO–4K2O (mol.%)) was synthesized for being used in bone reconstruction. The prepared BGs were then manufactured as three-dimensional (3D) scaffolds by using the sponge replica approach. The microstructure of the samples was assessed by X-ray diffraction (XRD) and the surface morphology was observed by using scanning electron microscopy (SEM). The in vitro bioactivity and the release of osteo-stimulatory Mg2+ ions from the prepared samples were investigated over 7 days of incubation in simulated body fluids (SBF). In vitro cellular analyses revealed the compatibility of the Mg-doped BGs with human osteosarcoma cells (MG-63 cell line). Moreover, the Mg-doped BGs could induce bone nodule formation in vitro and improve the migratory ability of human umbilical vein endothelial cells (HUVECs). In vivo osteogenic capacity was further evaluated by implanting the BG-derived scaffolds into surgically-created critical-size bone defects in rats. Histological and immunohistological observations revealed an appropriate bone regeneration in the animals receiving the glass-based scaffolds after 12 weeks of surgery. In conclusion, our study indicates the effectiveness of the Mg-doped BGs in stimulating osteogenesis in both in vitro and in vivo conditions.


Author(s):  
Victoria Barnhouse ◽  
Nathan Petrikas ◽  
Cody Crosby ◽  
Janet Zoldan ◽  
Brendan Harley

ABSTRACTAdult hematopoietic stem cells (HSCs) produce the body’s full complement of blood and immune cells. They reside in specialized microenvironments, or niches, within the bone marrow. The perivascular niche near blood vessels is believed to help maintain primitive HSCs in an undifferentiated state but demonstration of this effect is difficult. In vivo studies make it challenging to determine the direct effect of the endosteal and perivascular niches as they can be in close proximity, and two-dimensional in vitro cultures often lack an instructive extracellular matrix environment. We describe a tissue engineering approach to develop and characterize a three-dimensional perivascular tissue model to investigate the influence of the perivascular secretome on HSC behavior. We generate 3D endothelial networks in methacrylamide-functionalized gelatin hydrogels using human umbilical vein endothelial cells (HUVECs) and mesenchymal stromal cells (MSCs). We identify a subset of secreted factors important for HSC function, and examine the response of primary murine HSCs in hydrogels to the perivascular secretome. Within 4 days of culture, perivascular conditioned media promoted maintenance of a greater fraction of hematopoietic stem and progenitor cells. This work represents an important first-generation perivascular model to investigate the role of niche secreted factors on the maintenance of primary HSCs.


Sign in / Sign up

Export Citation Format

Share Document