scholarly journals The amyloid concentric β-barrel hypothesis: Models of amyloid beta 42 oligomers and annular protofibrils

Author(s):  
Stewart Durell ◽  
Rakez Kayed ◽  
H, Guy

Amyloid beta (Aβ) peptides, a major contributor to Alzheimers disease, occur in differing lengths, each of which forms a multitude of assembly types. The most toxic soluble oligomers are formed by Aβ42; some of which have antiparallel β-sheets. Previously, our group proposed molecular models of Aβ42 hexamers in which the C-terminus third of the peptide (S3) forms an antiparallel 6-stranded β-barrel that is surrounded by an antiparallel barrel formed by the more polar N-terminus (S1) and middle (S2) portions. These hexamers were proposed to act as seeds from which dodecamers, octadecamers, both smooth and beaded annular protofibrils, and transmembrane channels form. Since then, numerous aspects of our models have been supported by experimental findings. Recently, NMR-based structures have been proposed for Aβ42 tetramers and octamers, and NMR studies have been reported for oligomers composed of ~ 32 monomers. Here we propose a range of concentric β-barrel models and compare their dimensions to image-averaged electron micrographs of both beaded annular protofibrils (bAPFs) and smooth annular protofibrils (sAPFs) of Aβ42. The smaller oligomers have 6, 8, 12, 16, and 18 monomers. These beads string together to form necklace-like bAPFs. These gradually morph into sAPFs in which a S3 β-barrel is shielded on one or both sides by β-barrels formed from S1 and S2 segments.

2021 ◽  
Author(s):  
H. Robert Guy ◽  
Rakez Kayed ◽  
Stewart R. Durell

Amyloid beta (Aβ) peptides, a major contributor to Alzheimers disease, occur in differing lengths, each of which forms a multitude of assembly types. The most toxic soluble oligomers are formed by Aβ42; some of which have antiparallel β-sheets. Previously, our group proposed molecular models of Aβ42 hexamers in which the C-terminus third of the peptide (S3) forms an antiparallel 6-stranded β-barrel that is surrounded by an antiparallel barrel formed by the more polar N-terminus (S1) and middle (S2) portions. These hexamers were proposed to act as seeds from which dodecamers, octadecamers, both smooth and beaded annular protofibrils, and transmembrane channels form. Since then, numerous aspects of our models have been supported by experimental findings. Recently, NMR-based structures have been proposed for Aβ42 tetramers and octamers, and NMR studies have been reported for oligomers composed of ~ 32 monomers. Here we propose a range of concentric β-barrel models and compare their dimensions to image-averaged electron micrographs of both beaded annular protofibrils (bAPFs) and smooth annular protofibrils (sAPFs) of Aβ42. The smaller oligomers have 6, 8, 12, 16, and 18 monomers. These beads string together to form necklace-like bAPFs. These gradually morph into sAPFs in which a S3 β-barrel is shielded on one or both sides by β-barrels formed from S1 and S2 segments.


2018 ◽  
Author(s):  
Stewart R. Durell ◽  
Rakez Kayed ◽  
H. Robert Guy

AbstractAmyloid beta (Aβ) peptides are a major contributor to Alzheimer’s disease. Previously, our group proposed molecular models of Aβ42 hexamers with two concentric antiparallel β-barrels that act as seeds from which dodecamers, octadecamers, both smooth and beaded annular protofibrils, and transmembrane channels form. Since then, numerous aspects of our models have been supported by experimental findings. Here we develop a more extensive range of models to be consistent with dimensions of assemblies observed in electron microscopy images of annular protofibrils and transmembrane assemblies. These models have the following features: Dodecamers with 2-concentric β-barrels are the major components of beaded annular protofibrils (bAPFs). These beads merge to form smooth annular protofibrils (sAPFs) that have three or four concentric β-barrels. Channels form from two to nine hexamers. Antiparallel C-terminus S3 segments form an outer transmembrane β-barrel. Half of the monomers of vertically asymmetric 12mer to 36mer channels form parallel transmembrane S2 β-barrels, and S1-S2 (N-terminus and middle) segments of the other half of the monomers form aqueous domains on the cis side of the membrane. Unit cells of 42-54mers have two more transmembrane S2 segments, with four concentric β-barrels in the transmembrane region and two concentric β-barrels on the cis side of the membrane.


2017 ◽  
Vol 114 (27) ◽  
pp. 7112-7117 ◽  
Author(s):  
Wan-Lin Wu ◽  
Christopher Robert Grotefend ◽  
Ming-Ting Tsai ◽  
Yi-Ling Wang ◽  
Vladimir Radic ◽  
...  

CCR5 (R5)-tropic, but not CXCR4 (X4)-tropic, HIV-1 is associated with primary HIV-1 infection and transmission. Recent studies have shown that IFN-induced transmembrane (IFITM) proteins, including IFITM1, IFITM2, and IFITM3, restrict a broad range of viruses. Here, we demonstrate that an IFITM2 isoform (Δ20 IFITM2) lacking 20 amino acids at the N terminus differentially restricts X4 and R5 HIV-1. Δ20 IFITM2 suppresses replication of X4 HIV-1 strains by inhibiting their entry. High levels of Δ20 IFITM2 expression could be detected in CD4+T cells and in monocytes. Infection of X4 viruses in monocyte-derived macrophages and dendritic cells is enhanced upon depletion of IFITM2 isoforms. Furthermore, we also show that coreceptor use is the determining factor for differential HIV-1 restriction of Δ20 IFITM2. When we replace the C terminus of CCR5 with the C terminus of CXCR4, R5 viruses become more susceptible to Δ20 IFITM2-mediated restriction. In contrast to previous studies, our research reveals that neither X4 nor R5 HIV-1 is suppressed by IFITM2 and IFITM3. The multifactor gatekeeping model has been proposed to explain restriction of X4 viruses in the early stage of HIV-1 diseases. Our findings indicate that Δ20 IFITM2 may serve as a major contributor to this gatekeeping mechanism.


1985 ◽  
Vol 50 (6) ◽  
pp. 1329-1334
Author(s):  
Jaroslav Vičar ◽  
Linda Servítová ◽  
Martin Flegel ◽  
Karel Hauzer ◽  
Tomislav Barth

Analogues of [5-Leu]enkephalin, prolonged by methionine on the N-terminus or, by lysine or methionine on the C-terminus were prepared by fragment condensation, purified by ion exchange chromatography or high-pressure liquid chromatography. The substances were characterised by their opioid activity in a test on guinea-pig ileum in comparison with the activity of [5-Leu]enkephalin.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sohyeon Seo ◽  
Jinju Lee ◽  
Jungsue Choi ◽  
G. Hwan Park ◽  
Yeseul Hong ◽  
...  

AbstractAssembled amyloid beta (Aβ) peptides have been considered pathological assemblies involved in human brain diseases, and the electron transfer or electron transport characteristics of Aβ are important for the formation of structured assemblies. Here, we report the electrical characteristics of surface-assembled Aβ peptides similar to those observed in Alzheimer’s patients. These characteristics correlate to their electron transfer characteristics. Electrical current–voltage plots of Aβ vertical junction devices show the Aβ sequence dependence of the current densities at both Aβ monomers (mono-Aβs) and Aβ oligomers (oli-Aβs), while Aβ sequence dependence is not clearly observed in the electrical characteristics of Aβ planar field effect transistors (FETs). In particular, surface oligomerization of Aβ peptides drastically decreases the activity of electron transfer, which presents a change in the electron transport pathway in the Aβ vertical junctions. Electron transport at oli-Aβ junctions is symmetric (tunneling/tunneling) due to the weak and voltage-independent coupling of the less redox-reactive oli-Aβ to the contacts, while that at mono-Aβ junctions is asymmetric (hopping/tunneling) due to redox levels of mono-Aβ voltage-dependently coupled with contact electrodes. Consequently, through vertical junctions, the sequence- and conformation-dependent electrical characteristics of Aβs can reveal their electron transfer activities.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1323
Author(s):  
Irini Doytchinova ◽  
Mariyana Atanasova ◽  
Evdokiya Salamanova ◽  
Stefan Ivanov ◽  
Ivan Dimitrov

The amyloid plaques are a key hallmark of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Amyloidogenesis is a complex long-lasting multiphase process starting with the formation of nuclei of amyloid peptides: a process assigned as a primary nucleation. Curcumin (CU) is a well-known inhibitor of the aggregation of amyloid-beta (Aβ) peptides. Even more, CU is able to disintegrate preformed Aβ firbils and amyloid plaques. Here, we simulate by molecular dynamics the primary nucleation process of 12 Aβ peptides and investigate the effects of CU on the process. We found that CU molecules intercalate among the Aβ chains and bind tightly to them by hydrogen bonds, hydrophobic, π–π, and cation–π interactions. In the presence of CU, the Aβ peptides form a primary nucleus of a bigger size. The peptide chains in the nucleus become less flexible and more disordered, and the number of non-native contacts and hydrogen bonds between them decreases. For comparison, the effects of the weaker Aβ inhibitor ferulic acid (FA) on the primary nucleation are also examined. Our study is in good agreement with the observation that taken regularly, CU is able to prevent or at least delay the onset of neurodegenerative disorders.


2014 ◽  
Vol 81 (5) ◽  
pp. 1661-1667 ◽  
Author(s):  
Santosh Kumar Tiwari ◽  
Katia Sutyak Noll ◽  
Veronica L. Cavera ◽  
Michael L. Chikindas

ABSTRACTTwo hybrid bacteriocins, enterocin E50-52/pediocin PA-1 (EP) and pediocin PA-1/enterocin E50-52 (PE), were designed by combining the N terminus of enterocin E50-52 and the C terminus of pediocin PA-1 and by combining the C terminus of pediocin PA-1 and the N terminus of enterocin E50-52, respectively. Both hybrid bacteriocins showed reduced MICs compared to those of their natural counterparts. The MICs of hybrid PE and EP were 64- and 32-fold lower, respectively, than the MIC of pediocin PA-1 and 8- and 4-fold lower, respectively, than the MIC of enterocin E50-52. In this study, the effect of hybrid as well as wild-type (WT) bacteriocins on the transmembrane electrical potential (ΔΨ) and their ability to induce the efflux of intracellular ATP were investigated. Enterocin E50-52, pediocin PA-1, and hybrid bacteriocin PE were able to dissipate ΔΨ, but EP was unable to deplete this component. Both hybrid bacteriocins caused a loss of the intracellular concentration of ATP. EP, however, caused a faster efflux than PE and enterocin E50-52. Enterocin E50-52 and hybrids PE and EP were active against the Gram-positive and Gram-negative bacteria tested, such asMicrococcus luteus,Salmonella entericaserovar Enteritidis 20E1090, andEscherichia coliO157:H7. The hybrid bacteriocins designed and described herein are antimicrobial peptides with MICs lower those of their natural counterparts. Both hybrid peptides induce the loss of intracellular ATP and are capable of inhibiting Gram-negative bacteria, and PE dissipates the electrical potential. In this study, the MIC of hybrid bacteriocin PE decreased 64-fold compared to the MIC of its natural peptide counterpart, pediocin PA-1. Inhibition of Gram-negative pathogens confers an additional advantage for the application of these peptides in therapeutics.


Sign in / Sign up

Export Citation Format

Share Document