scholarly journals Transcriptome analysis provides critical answers to the “variants of uncertain significance” conundrum

Author(s):  
Mackenzie Postel ◽  
Julie O. Culver ◽  
Charité Ricker ◽  
David Craig

The vast volume of data that has been generated as a result of the next-generation sequencing revolution is overwhelming to sift through and interpret. Parsing functional vs. non-functional and benign vs. pathogenic variants continues to be a challenge. Out of three billion bases, the genomes of two given individuals will only differ by about 3 million variants (0.1%). Furthermore, only a small fraction of these are biologically-relevant and, of those that are functional, only a handful actually drive disease pathology. While whole genome and exome sequencing have transformed our collective understanding of the role that genetics plays in disease pathogenesis, there are certain conditions and populations for whom DNA-level data has failed to produce a molecular diagnosis. Patients of non-White race/non-European ancestry are disproportionately affected by “variants of unknown/uncertain significance” (VUS). This limits the scope of precision medicine for minority patients and perpetuates health disparities. VUS often include deep intronic and splicing variants which are difficult to interpret in DNA alone. RNA analysis is capable of illuminating the consequences of VUS thereby allowing for their reclassification as pathogenic vs. benign. Here we review the critical role, going forward, of transcriptome analysis for clarifying VUS in both neoplastic and non-neoplastic diseases.

2021 ◽  
Author(s):  
Paola Nix ◽  
Erin Mundt ◽  
Bradford Coffee ◽  
Elizabeth Goossen ◽  
Bryan M. Warf ◽  
...  

AbstractA substantial proportion of pathogenic variants associated with an increased risk of hereditary cancer are sequence variants affecting RNA splicing. The classification of these variants can be complex when both non-functional and functional transcripts are produced from the variant allele. We present four BRCA2 splice site variants with complex variant interpretations (BRCA2 c.68-3T>G, c.68-2A>G, c.425G>T, c.8331+2T>C). Evidence supporting a pathogenic classification is available for each variant, including in silico models, absence in population databases, and published functional data. However, comprehensive RNA analysis showed that some functional transcript may be produced by each variant. BRCA2 c.68-3T>G results in a partial splice defect. For BRCA2 c.68-2A>G and c.425G>T, aberrant splicing was shown to produce a potentially functional, in-frame transcript. BRCA2 c.8331+2T>C may utilize a functional GC donor in place of the wild-type GT donor. The severity of cancer history for carriers of these variants was also assessed using a history weighting algorithm and was not consistent with pathogenic controls (carriers of known pathogenic variants in BRCA2). Due to the conflicting evidence, our laboratory classifies these BRCA2 variants as variants of uncertain significance. This highlights the importance of evaluating new and existing evidence to ensure accurate variant classification and appropriate patient care.


2020 ◽  
Vol 9 (9) ◽  
pp. 3003
Author(s):  
Aldo Germani ◽  
Simona Petrucci ◽  
Laura De Marchis ◽  
Fabio Libi ◽  
Camilla Savio ◽  
...  

The 5–10% of breast/ovarian cancers (BC and OC) are inherited, and germline pathogenic (P) variants in DNA damage repair (DDR) genes BRCA1 and BRCA2 explain only 10–20% of these cases. Currently, new DDR genes have been related to BC/OC and to pancreatic (PC) cancers, but the prevalence of P variants remains to be explored. The purpose of this study was to investigate the spectrum and the prevalence of pathogenic variants in DDR pathway genes other than BRCA1/2 and to correlate the genotype with the clinical phenotype. A cohort of 113 non-BRCA patients was analyzed by next-generation sequencing using a multigene panel of the 25 DDR pathways genes related to BC, OC, and PC. We found 43 unique variants in 18 of 25 analyzed genes, 14 classified as P/likely pathogenic (LP) and 28 as variants of uncertain significance (VUS). Deleterious variants were identified in 14% of index cases, whereas a VUS was identified in 20% of the probands. We observed a high incidence of deleterious variants in the CHEK2 gene, and a new pathogenic variant was detected in the RECQL gene. These results supported the clinical utility of multigene panel to increase the detection of P/LP carriers and to identify new actionable pathogenic gene variants useful for preventive and therapeutic approaches.


2019 ◽  
Vol 28 (23) ◽  
pp. 3912-3920 ◽  
Author(s):  
Claudia Strafella ◽  
Valerio Caputo ◽  
Rosaria Maria Galota ◽  
Giulia Campoli ◽  
Cristina Bax ◽  
...  

Abstract In this study, we investigated the sequence of (Structural Maintenance of Chromosomes flexible Hinge Domain containing 1) SMCHD1 gene in a cohort of clinically defined FSHD (facioscapulohumeral muscular dystrophy) patients in order to assess the distribution of SMCHD1 variants, considering the D4Z4 fragment size in terms of repeated units (RUs; short fragment: 1–7 RU, borderline: 8-10RU and normal fragment: >11RU). The analysis of SMCHD1 revealed the presence of 82 variants scattered throughout the introns, exons and 3’untranslated region (3′UTR) of the gene. Among them, 64 were classified as benign polymorphisms and 6 as VUS (variants of uncertain significance). Interestingly, seven pathogenic/likely pathogenic variants were identified in patients carrying a borderline or normal D4Z4 fragment size, namely c.182_183dupGT (p.Q62Vfs*48), c.2129dupC (p.A711Cfs*11), c.3469G>T (p.G1157*), c.5150_5151delAA (p.K1717Rfs*16) and c.1131+2_1131+5delTAAG, c.3010A>T (p.K1004*), c.853G>C (p.G285R). All of them were predicted to disrupt the structure and conformation of SMCHD1, resulting in the loss of GHKL-ATPase and SMC hinge essential domains. These results are consistent with the FSHD symptomatology and the Clinical Severity Score (CSS) of patients. In addition, five variants (c.*1376A>C, rs7238459; c.*1579G>A, rs559994; c.*1397A>G, rs150573037; c.*1631C>T, rs193227855; c.*1889G>C, rs149259359) were identified in the 3′UTR region of SMCHD1, suggesting a possible miRNA-dependent regulatory effect on FSHD-related pathways. The present study highlights the clinical utility of next-generation sequencing (NGS) platforms for the molecular diagnosis of FSHD and the importance of integrating molecular findings and clinical data in order to improve the accuracy of genotype–phenotype correlations.


Author(s):  
Tess D. Pottinger ◽  
Megan J. Puckelwartz ◽  
Lorenzo L. Pesce ◽  
Avery Robinson ◽  
Samuel Kearns ◽  
...  

Background Genome sequencing coupled with electronic heath record data can uncover medically important genetic variation. Interpretation of rare genetic variation and its role in mediating cardiovascular phenotypes is confounded by variants of uncertain significance. Methods and Results We analyzed the whole genome sequence of 900 racially and ethnically diverse biobank participants selected from a single US center. Participants were equally divided among European, African, Hispanic, and mixed races/ethnicities. We evaluated the American College of Medical Genetics and Genomics medically actionable list of 59 genes, focusing on the cardiac genes. Variation was interpreted using the most recent reports in ClinVar, a database of medically relevant human variation. We identified 19 individuals with pathogenic or likely pathogenic variants in cardiac actionable genes (2%) and found evidence of related clinical correlates in the electronic health record. Participants of African ancestry, compared with those of European ancestry, had more variants of uncertain significance in the medically actionable genes including the 30 cardiac actionable genes, even when normalized to total variant count per person. Longitudinal measures of left ventricle size from ≈400 biobank participants (1723 patient‐years) were correlated with genetic findings. The presence of ≥1 uncertain variant in the actionable cardiac genes and a cardiomyopathy diagnosis correlated with increased left ventricular internal diameter in diastole and in systole. In particular, MYBPC 3 was identified as a gene with excess variants of uncertain significance. Conclusions These data indicate that a subset of uncertain genetic variants may confer risk and should not be considered benign.


2018 ◽  
Author(s):  
Marina T. DiStefano ◽  
Sarah E. Hemphill ◽  
Brandon J. Cushman ◽  
Mark J. Bowser ◽  
Elizabeth Hynes ◽  
...  

AbstractVariant interpretation depends on accurate annotations using biologically relevant transcripts. We have developed a systematic strategy for designating primary transcripts, and applied it to 109 hearing loss-associated genes that were divided into 3 categories. Category 1 genes (n=38) had a single transcript, Category 2 genes (n=32) had multiple transcripts, but a single transcript was sufficient to represent all exons, and Category 3 genes (n=38) had multiple transcripts with unique exons. Transcripts were curated with respect to gene expression reported in the literature and the Genotype-Tissue Expression Project. In addition, high frequency loss of function variants in the Genome Aggregation Database, and disease-causing variants in ClinVar and the Human Gene Mutation Database across the 109 genes were queried. These data were used to classify exons as "clinically relevant", "uncertain significance", or "clinically insignificant". Interestingly, 7% of all exons, containing >124 "clinically significant" variants, were of “uncertain significance”. Finally, we used exon-level next generation sequencing quality metrics generated at two clinical labs, and identified a total of 43 technically challenging exons in 20 different genes that had inadequate coverage and/or homology issues which might lead to false variant calls. We have demonstrated that transcript analysis plays a critical role in accurate clinical variant interpretation.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1286 ◽  
Author(s):  
Concetta Santonocito ◽  
Roberta Rizza ◽  
Ida Paris ◽  
Laura De Marchis ◽  
Carmela Paolillo ◽  
...  

Pathogenic variants (PVs) carriers in BRCA1 or BRCA2 are associated with an elevated lifetime risk of developing breast cancer (BC) and/or ovarian cancer (OC). The prevalence of BRCA1 and BRCA2 germline alterations is extremely variable among different ethnic groups. Particularly, the rate of variants in Italian BC and/or OC families is rather controversial and ranges from 8% to 37%, according to different reports. By In Vitro Diagnostic (IVD) next generation sequencing (NGS)-based pipelines, we routinely screened thousands of patients with either sporadic or cancer family history. By NGS, we identified new PVs and some variants of uncertain significance (VUS) which were also evaluated in silico using dedicated tools. We report in detail data regarding BRCA1/2 variants identified in 517 out of 2351 BC and OC patients. The aim of this study was to report the incidence and spectrum of BRCA1/2 variants observed in BC and/or OC patients, tested in at Policlinico Gemelli Foundation Hospital, the origin of which is mainly from Central and Southern Italy. This study provides an overview of the variant frequency in these geographic areas of Italy and provides data that could be used in the clinical management of patients.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2704
Author(s):  
Sally Yepes ◽  
Nirav N. Shah ◽  
Jiwei Bai ◽  
Hela Koka ◽  
Chuzhong Li ◽  
...  

Background: Chordoma is a rare bone cancer with an unknown etiology. TBXT is the only chordoma susceptibility gene identified to date; germline single nucleotide variants and copy number variants in TBXT have been associated with chordoma susceptibility in familial and sporadic chordoma. However, the genetic susceptibility of chordoma remains largely unknown. In this study, we investigated rare germline genetic variants in genes involved in TBXT/chordoma-related signaling pathways and other biological processes in chordoma patients from North America and China. Methods: We identified variants that were very rare in general population and internal control datasets and showed evidence for pathogenicity in 265 genes in a whole exome sequencing (WES) dataset of 138 chordoma patients of European ancestry and in a whole genome sequencing (WGS) dataset of 80 Chinese patients with skull base chordoma. Results: Rare and likely pathogenic variants were identified in 32 of 138 European ancestry patients (23%), including genes that are part of notochord development, PI3K/AKT/mTOR, Sonic Hedgehog, SWI/SNF complex and mesoderm development pathways. Rare pathogenic variants in COL2A1, EXT1, PDK1, LRP2, TBXT and TSC2, among others, were also observed in Chinese patients. Conclusion: We identified several rare loss-of-function and predicted deleterious missense variants in germline DNA from patients with chordoma, which may influence chordoma predisposition and reflect a complex susceptibility, warranting further investigation in large studies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panagiotis Moulos

Abstract Background The relentless continuing emergence of new genomic sequencing protocols and the resulting generation of ever larger datasets continue to challenge the meaningful summarization and visualization of the underlying signal generated to answer important qualitative and quantitative biological questions. As a result, the need for novel software able to reliably produce quick, comprehensive, and easily repeatable genomic signal visualizations in a user-friendly manner is rapidly re-emerging. Results recoup is a Bioconductor package for quick, flexible, versatile, and accurate visualization of genomic coverage profiles generated from Next Generation Sequencing data. Coupled with a database of precalculated genomic regions for multiple organisms, recoup offers processing mechanisms for quick, efficient, and multi-level data interrogation with minimal effort, while at the same time creating publication-quality visualizations. Special focus is given on plot reusability, reproducibility, and real-time exploration and formatting options, operations rarely supported in similar visualization tools in a profound way. recoup was assessed using several qualitative user metrics and found to balance the tradeoff between important package features, including speed, visualization quality, overall friendliness, and the reusability of the results with minimal additional calculations. Conclusion While some existing solutions for the comprehensive visualization of NGS data signal offer satisfying results, they are often compromised regarding issues such as effortless tracking of processing and preparation steps under a common computational environment, visualization quality and user friendliness. recoup is a unique package presenting a balanced tradeoff for a combination of assessment criteria while remaining fast and friendly.


Author(s):  
Silvia Martin-Almedina ◽  
Kazim Ogmen ◽  
Ege Sackey ◽  
Dionysios Grigoriadis ◽  
Christina Karapouliou ◽  
...  

Abstract Purpose Several clinical phenotypes including fetal hydrops, central conducting lymphatic anomaly or capillary malformations with arteriovenous malformations 2 (CM-AVM2) have been associated with EPHB4 (Ephrin type B receptor 4) variants, demanding new approaches for deciphering pathogenesis of novel variants of uncertain significance (VUS) identified in EPHB4, and for the identification of differentiated disease mechanisms at the molecular level. Methods Ten index cases with various phenotypes, either fetal hydrops, CM-AVM2, or peripheral lower limb lymphedema, whose distinct clinical phenotypes are described in detail in this study, presented with a variant in EPHB4. In vitro functional studies were performed to confirm pathogenicity. Results Pathogenicity was demonstrated for six of the seven novel EPHB4 VUS investigated. A heterogeneity of molecular disease mechanisms was identified, from loss of protein production or aberrant subcellular localization to total reduction of the phosphorylation capability of the receptor. There was some phenotype–genotype correlation; however, previously unreported intrafamilial overlapping phenotypes such as lymphatic-related fetal hydrops (LRFH) and CM-AVM2 in the same family were observed. Conclusion This study highlights the usefulness of protein expression and subcellular localization studies to predict EPHB4 variant pathogenesis. Our accurate clinical phenotyping expands our interpretation of the Janus-faced spectrum of EPHB4-related disorders, introducing the discovery of cases with overlapping phenotypes.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Valeria D’Argenio ◽  
Federica Cariati ◽  
Rossella Tomaiuolo

The current diagnostic path of infertile couples is long lasting and often ineffective. Genetic tests, in particular, appear as a limiting step due to their jeopardized use on one side, and to the limited number of genes evaluated on the other. In this context, the development and diffusion, also in routine diagnostic settings, of next generation sequencing (NGS)-based methods for the analyses of several genes in multiple subjects at a time is improving the diagnostic sensitivity of molecular analyses. Thus, we developed One4Two®, a custom NGS panel to optimize the diagnostic journey of infertile couples. The panel validation was carried out in three steps analyzing a total of 83 subjects. Interestingly, all the previously identified variants were confirmed, assessing the analytic sensitivity of the method. Moreover, additional pathogenic variants have been identified underlying the diagnostic efficacy of the proposed method. One4Two® allows the simultaneous analysis of infertility-related genes, disease-genes of common inherited diseases, and of polymorphisms related to therapy outcome. Thus, One4Two® is able to improve the diagnostic journey of infertile couples by simplifying the whole process not only for patients, but also for laboratories and reproduction specialists moving toward an even more personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document