scholarly journals SUBDUCTION OF SOUTH ATLANTIC SUBTROPICAL MODE WATERS

2013 ◽  
Vol 31 (3) ◽  
pp. 495
Author(s):  
Guilherme Nogueira Mill ◽  
Afonso De Moraes Paiva

ABSTRACT. The formation of the Subtropical Mode Waters (STMW) in the South Atlantic, part of the South Atlantic Central Water (SACW), by the subduction process, transferring mixed layer fluid into the permanent thermocline, is investigated using results of numerical simulations with the HYbrid Coordinate Ocean Model (HYCOM). Subduction rates were estimated by the kinematic method, adding the lateral induction of fluid through the sloping base of winter mixed layer with the vertical velocities at the base of winter mixed layer. Subduction rates above 100 m/year were found over the South Atlantic Subtropical Front, with maximum rates larger than 200 m/year in three distinct regions. The subduction pattern is dominated by the contribution of lateral induction, specially over the Subtropical Front, with rates significantly larger than the maximum rate of Ekman pumping. Different STMW were identified, associated with maximum layers thickness in isopycnals representative of upper and middle portion of SACW. The regions of maximum subduction rates were associated with the formation of the STMW.Keywords: mixed layer, ventilation, SACW, permanent thermocline, lateral induction. RESUMO. A formação de Águas Modais Subtropicais (AMS) no Atlântico Sul, que fazem parte da Água Central do Atlântico Sul (ACAS), transferindo fluido da camada de mistura para a termoclina permantente pelo processo de subducção, foi estudada a partir dos resultados de simulações numéricas com um modelo oceânico de coordenadas híbridas (HYCOM – Hybrid Coordinate Ocean Model). A subducção foi calculada pelo método cinemático, somando as contribuições da indução lateral de fluido através da base da camada de mistura e as velocidades verticais na base da camada de mistura de inverno. Foram encontradas taxas de subducção superiores a 100 m/ano ao longo da Frente Subtropical do Atlântico Sul, com três núcleos distintos de máxima subducção atingindo mais de 200 m/ano. A indução lateral mostrou-se o processo dominante na subducção, especialmente ao longo da frente, com taxas significativamente superiores ao bombeamento de Ekman. Foram identificadas diferentes AMS associadas às máximas espessuras de camadas representativas das porções média e superior da Água Central do Atlântico Sul (ACAS). As regiões de máximas taxas de subducção estão associadas à formação das AMS.Palavras-chave: camada de mistura, ventilação, ACAS, termoclina permanente, indução lateral.

2020 ◽  
Vol 33 (17) ◽  
pp. 7679-7696
Author(s):  
Wlademir Santis ◽  
Paola Castellanos ◽  
Edmo Campos

AbstractThe South Atlantic subtropical dipole is the dominant mode of coupled variability in the South Atlantic, connecting sea level pressure and sea surface temperature. Previous studies have shown its great relevance to the climate conditions over South America and West Africa. We have used several numerical experiments with the Hybrid Coordinate Ocean Model to investigate the effects that an austral winter–spring dipole asserts on the South Atlantic. We explore the interaction between SST anomalies and the formation of the fossilized mixing region, which preserve temperature anomalies underneath the summer mixed layer, until they feed back to SST after the next autumn. It was found that, through this process, there is a memory effect that restores temperature anomalies from an austral winter–spring dipole back to the austral winter of the following year. The dominant mechanisms are the contribution from entrainment and surface net heat flux (NHF). Entrainment is mostly controlled by vertical temperature gradient anomalies, while surface NHF is controlled by interactions of climatological ocean heat loss and anomalies of mixed layer thickness. Our results suggest that the combined effect of entrainment and surface NHF is different in the southwest and northeast dipole regions, leading to differences in both intensity and timing of SST anomalies. Turbulent and nonlinear processes are most important to reduce entrainment in the southwest dipole region and to increase the memory effect asymmetry.


2005 ◽  
Vol 18 (11) ◽  
pp. 1719-1735 ◽  
Author(s):  
Reindert J. Haarsma ◽  
Edmo J. D. Campos ◽  
Wilco Hazeleger ◽  
Camiel Severijns ◽  
Alberto R. Piola ◽  
...  

Abstract Using an atmosphere model of intermediate complexity and a hierarchy of ocean models, the dominant modes of interannual and decadal variability in the South Atlantic Ocean are studied. The atmosphere Simplified Parameterizations Primitive Equation Dynamics (SPEEDY) model has T30L7 resolution. The physical package consists of a set of simplified physical parameterization schemes, based on the same principles adopted in the schemes of state-of-the-art AGCMs. It is at least an order of magnitude faster, whereas the quality of the simulated climate compares well with those models. The hierarchy of ocean models consists of simple mixed layer models with an increasing number of physical processes involved such as Ekman transport, wind-induced mixing, and wind-driven barotropic transport. Finally, the atmosphere model is coupled to a regional version of the Miami Isopycnal Coordinate Ocean Model (MICOM) covering the South Atlantic with a horizontal resolution of 1° and 16 vertical layers. The coupled modes of mean sea level pressure and sea surface temperature simulated by SPEEDY–MICOM strongly resemble the modes as analyzed from the NCEP–NCAR reanalysis, indicating that this model configuration possesses the required physical mechanisms for generating these modes of variability. Using the ocean model hierarchy the authors were able to show that turbulent heat fluxes, Ekman transport, and wind-induced mixing contribute to the generation of the dominant modes of coupled SST variability. The different roles of these terms in generating these modes are analyzed. Variations in the wind-driven barotropic transport mainly seem to affect the SST variability in the Brazil–Malvinas confluence zone. The spectra of the mixed layer models appeared to be too red in comparison with the fully coupled SPEEDY–MICOM model due to the too strong coupling between SST and surface air temperatures (SATs), resulting from the inability to advect and subduct SST anomalies by the mixed layer models. In SPEEDY–MICOM anomalies in the southeastern corner of the South Atlantic are subducted and advected toward the north Brazilian coast on a time scale of about 6 yr.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaoyu Yang ◽  
Haibin Ye

AbstractA coastal front was detected in the eastern Guangdong (EGD) coastal waters during a downwelling-favorable wind period by using the diffuse attenuation coefficient at 490 nm (Kd(490)). Long-term satellite data, meteorological data and hydrographic data collected from 2003 to 2017 were jointly utilized to analyze the environmental factors affecting coastal fronts. The intensities of the coastal fronts were found to be associated with the downwelling intensity. The monthly mean Kd(490) anomalies in shallow coastal waters less than 25 m deep along the EGD coast and the monthly mean Ekman pumping velocities retrieved by the ERA5 dataset were negatively correlated, with a Pearson correlation of − 0.71. The fronts started in October, became weaker and gradually disappeared after January, extending southwestward from the southeastern coast of Guangdong Province to the Wanshan Archipelago in the South China Sea (SCS). The cross-frontal differences in the mean Kd(490) values could reach 3.7 m−1. Noticeable peaks were found in the meridional distribution of the mean Kd(490) values at 22.5°N and 22.2°N and in the zonal distribution of the mean Kd(490) values at 114.7°E and 114.4°E. The peaks tended to narrow as the latitude increased. The average coastal surface currents obtained from the global Hybrid Coordinate Ocean Model (HYCOM) showed that waters with high nutrient and sediment contents in the Fujian and Zhejiang coastal areas in the southern part of the East China Sea could flow into the SCS. The directions and lengths of the fronts were found to be associated with the flow advection.


2005 ◽  
Vol 35 (1) ◽  
pp. 13-32 ◽  
Author(s):  
A. Birol Kara ◽  
Alan J. Wallcraft ◽  
Harley E. Hurlburt

Abstract A 1/25° × 1/25° cos(lat) (longitude × latitude) (≈3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, σ, and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (kPAR) during 1997–2001. These satellite-based climatological kPAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbid (kPAR > 0.15 m−1, in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the kPAR. A constant solar-attenuation optical depth of ≈17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.


2005 ◽  
Vol 18 (12) ◽  
pp. 1925-1941 ◽  
Author(s):  
Keith Haines ◽  
Chris Old

Abstract A study of thermally driven water mass transformations over 100 yr in the ocean component of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is presented. The processes of surface-forced transformations, subduction and mixing, both above and below the winter mixed layer base, are quantified. Subtropical Mode Waters are formed by surface heat fluxes and subducted at more or less the same rate. However, Labrador Seawater and Nordic Seawater classes (the other main subduction classes) are primarily formed by mixing within the mixed layer with very little formation directly from surface heat fluxes. The Subpolar Mode Water classes are dominated by net obduction of water back into the mixed layer from below. Subtropical Mode Water (18°C) variability shows a cycle of formation by surface fluxes, subduction ∼2 yr later, followed by mixing with warmer waters below the winter mixed layer base during the next 3 yr, and finally obduction back into the mixed layer at 21°C, ∼5 yr after the original formation. Surface transformation of Subpolar Mode Waters, ∼12°C, are led by surface transformations of warmer waters by up to 5 yr as water is transferred from the subtropical gyre. They are also led by obduction variability from below the mixed layer, by ∼2 yr. The variability of obduction in Subpolar Mode Waters also appears to be preceded, by 3–5 yr, by variability in subduction of Labrador Sea Waters at ∼6°C. This supports a mechanism in which southward-propagating Labrador seawater anomalies below the subpolar gyre can influence the upper water circulation and obduction into the mixed layer.


2005 ◽  
Vol 18 (15) ◽  
pp. 2864-2882 ◽  
Author(s):  
J. C. Hermes ◽  
C. J. C. Reason

Abstract A global ocean model (ORCA2) forced with 50 yr of NCEP–NCAR reanalysis winds and heat fluxes has been used to investigate the evolution and forcing of interannual dipolelike sea surface temperature (SST) variability in the South Indian and South Atlantic Oceans. Although such patterns may also exist at times in only one of these basins and not the other, only events where there are coherent signals in both basins during the austral summer have been chosen for study in this paper. A positive (negative) event occurs when there is a significant warm (cool) SST anomaly evident in the southwest of both the South Indian and South Atlantic Oceans and a cool (warm) anomaly in the eastern subtropics. The large-scale forcing of these events appears to consist of a coherent modulation of the wavenumber-3 or -4 pattern in the Southern Hemisphere atmospheric circulation such that the semipermanent subtropical anticyclone in each basin is shifted from its summer mean position and its strength is modulated. A relationship to the Antarctic Oscillation is also apparent, and seems to strengthen after the mid-1970s. The modulated subtropical anticyclones lead to changes in the tropical easterlies and midlatitude westerlies in the South Atlantic and South Indian Oceans that result in anomalies in latent heat fluxes, upwelling, and Ekman heat transports, all of which contribute to the SST variability. In addition, there are significant modulations to the strong Rossby wave signals in the South Indian Ocean. The results of this study confirm the ability of the ORCA2 model to represent these dipole patterns and indicate connections between large-scale modulations of the Southern Hemisphere midlatitude atmospheric circulation and coevolving SST variability in the South Atlantic and South Indian Oceans.


2004 ◽  
Vol 34 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Toshio Suga ◽  
Kazunori Motoki ◽  
Yoshikazu Aoki ◽  
Alison M. Macdonald

2013 ◽  
Vol 31 (2) ◽  
pp. 271 ◽  
Author(s):  
Leonardo Nascimento Lima ◽  
Clemente Augusto Souza Tanajura

ABSTRACT. In this study, assimilation of Jason-1 and Jason-2 along-track sea level anomaly (SLA) data was conducted in a region of the tropical and South Atlantic (7◦N-36◦S, 20◦W up to the Brazilian coast) using an optimal interpolation method and the HYCOM (Hybrid Coordinate Ocean Model). Four 24 h-forecast experiments were performed daily from January 1 until March 31, 2011 considering different SLA assimilation data windows (1 day and 2 days) and different coefficients in the parameterization of the SLA covariance matrix model. The model horizontal resolution was 1/12◦ and the number of vertical layers was 21. The SLA analyses added to the mean sea surface height were projected to the subsurface with the Cooper & Haines (1996) scheme. The results showed that the experiment with 2-day window of along-track data and with specific parameterizations of the model SLA covariance error for sub-regions of the METAREA V was the most accurate. It completely reconstructed the model sea surface height and important improvements in the circulation were produced. For instance, there was a substantial improvement in the representation of the Brazil Current and North Brazil Undercurrent. However, since no assimilation of vertical profiles of temperature and salinity and of sea surface temperature was performed, the methodology employed here should be considered only as a step towards a high quality analysis for operational forecasting systems.   Keywords: data assimilation, optimal interpolation, Cooper & Haines scheme, altimetry data.   RESUMO. Neste estudo, a assimilação de dados de anomalia da altura da superfície do mar (AASM) ao longo da trilha dos satélites Jason-1 e Jason-2 foi conduzida em uma região do Atlântico tropical e Sul (7◦N-36◦S, 20◦W até a costa do Brasil) com o método de interpolação ótima e o modelo oceânico HYCOM (Hybrid Coordinate Ocean Model). Foram realizados quatro experimentos de previsão de 24 h entre 1 de janeiro e 31 de março de 2011, considerando diferentes janelas de assimilação de AASM (1 dia e 2 dias) e diferentes coeficientes na parametrização da matriz de covariância dos erros de AASM do modelo. A resolução horizontal empregada no HYCOM foi 1/12◦ para 21 camadas verticais. As correções de altura da superfície do mar devido à assimilação de AASM foram projetadas abaixo da camada de mistura através da técnica de Cooper & Haines (1996). Os resultados mostraram que o experimento com assimilação de dados ao longo da trilha dos satélites com a janela de 2 dias e com parametrizações da matriz de covariância específicas para sub-regiões da METAREA V foi o mais acurado. Ele reconstruiu completamente a altura da superfície do mar e também proporcionou melhorias na circulação oceânica reproduzida pelo modelo. Por exemplo, houve substancial melhoria da representação nos campos da Corrente do Brasil e Subcorrente Norte do Brasil. Entretanto, tendo em vista que não foi realizada a assimilação de perfis verticais de temperatura e de salinidade e da temperatura da superfície do mar, a metodologia apresentada deve ser considerada apenas como um passo na conquista de uma análise oceânica e de um sistema previsor de qualidade para fins operacionais.   Palavras-chave: assimilação de dados, interpolação ótima, técnica de Cooper & Haines, dados de altimetria.


2021 ◽  
pp. 1-51
Author(s):  
Yu Hong ◽  
Yan Du ◽  
Xingyue Xia ◽  
Lixiao Xu ◽  
Ying Zhang ◽  
...  

AbstractThe Subantarctic Mode Water (SAMW) is a major water mass in the South Indian and Pacific oceans and plays an important role in the ocean uptake and anthropogenic heat and carbon. The characteristics, formation, and long-term evolution of the SAMW are investigated in the “historical” and “SSP245” scenario simulations of the sixth Coupled Models Intercomparison Project (CMIP6). Defined by the low potential vorticity, the simulated SAMW is consistently thinner, shallower, lighter, and warmer than in observations, due to biases in the winter mixed layer properties and spatial distribution. The biases are especially large in the South Pacific Ocean. The winter mixed layer bias can be attributed to unrealistic heat loss and stratification in the models. Nevertheless, the SAMW is presented better in the CMIP6 than CMIP5, regarding its volume, location, and physical characteristics. In warmer climate, the simulated SAMW in the South Indian Ocean consistently becomes lighter in density, with a reduced volume and a southward shift in the subduction region. The reduced heat loss, instead of the increased Ekman pumping induced by the poleward intensified westerly wind, dominates in the SAMW change. The winter mixed layer shoals in the northern outcrop region and the SAMW subduction shifts southward where the mixed layer remains deep. The projected reduction of the SAMW volume is likely to impact the heat and freshwater redistribution in the Southern Ocean.


Sign in / Sign up

Export Citation Format

Share Document