scholarly journals Cattle (Bos Taurus) endometrium morphology on the seventh day of the estrous cycle

2020 ◽  
Author(s):  
Olga Ponomarjova ◽  
◽  
Ilga Sematovica ◽  
Inga Piginka-Vjaceslavova ◽  
Aida Vanaga ◽  
...  

The aim of our study was to describe the histopathological and cytological characteristic of the cow endometrium on the seventh day of the estrous cycle. In this study, 11 different breeds’ dairy cows (78.18 ± 37.46 months old, in 3.6 ± 2.17 lactation, the mean body condition score 3.4 ± 0.72 (5 points scale)) from Research and Study farm ‘Vecauce’ were selected. All cows were more than 210 days postpartum. Overall health and reproductive tract examination was performed, progesterone (P4) and estradiol (E2) concentration in blood serum were established and the biopsy and cytology samples of endometrium were taken. Mean E2 concentration was 14.92 ± 7.92 pg mL-1, mean P4 concentration was 13.64 ± 9.44 nmol L-1. The mean percentage in the cytology slides was established: epithelial cells 89 ± 9%, polimorphonuclear leukocytes (PMN) 6 ± 5%. Cytological subclinical endometritis (SE) was confirmed in 5 cows. Histopathological findings (out of 22 samples): endometrium stromal edema in 14, hemosiderin and hemosiderophages in 8, supranuclear vacuolization in 12, pseudodecidual reaction in 12 samples. No subnuclear vacuolization and mitosis in the glandular epithelium were detected. Histopathological examination did not reveal SE. Morphology between the uterine horns with and without corpus luteum (CL) and between cows with serum P4 level higher than 15 nmol L-1 and lower than 15 nmol L-1 were not statistically different (p>0.05). In conclusion, histopatological examination is more reliable diagnostic method for SE. Future investigation should be performed to establish cut-off values for the diagnosis of SE in cows more than 210 days postpartum.

1994 ◽  
Vol 45 (4) ◽  
pp. 795 ◽  
Author(s):  
H Hearnshaw ◽  
PF Arthur ◽  
R Barlow ◽  
PJ Kohun ◽  
RE Darnell

Post-weaning growth and body condition, puberty and pelvic size of 197 heifers comprising straightbred Hereford (HxH) and Brahman (BxB), first-cross (BxH) and back-cross (HxBH and BxBH) heifers were evaluated. The heifers were born over a 3 year period, and grazed improved and semi-improved pastures following weaning at Grafton, New South Wales. Prior to weaning, heifers had been reared by dams on three pasture systems (high, medium and low quality pastures). Heifers from low quality pre-weaning pasture had higher (P < 0.05) post-weaning liveweight gain than those from high and medium quality pastures. BxH heifers gained 71 g/day more (P < 0.05) than the mean gain of their contemporaries of the other genotypes, whose gains were similar, from weaning to either 26 or to 30 months of age. Liveweight at all ages was influenced by genotype x pre-weaning pasture system interaction. At 30 months of age, BxH heifers from high and medium pre-weaning pastures were the heaviest. At the same age, but from low quality pre-weaning pasture, heifers with crossbred dams (HxBH and BxBH) were the heaviest. Wither height depended significantly (P < 0.05) on the proportion of Bos indicus genes, increasing from 113.8 cm in the HxH heifers to 124.4 cm in the BxB heifers at 30 months of age. BxH heifers had a higher (P < 0.05) body condition score than their contemporaries of the other genotypes, which were in similar condition, at 26 and 30 months of age. On average (across pre-weaning pasture system), 9% of BxB heifers had reached puberty by 22 months of age compared to 62, 95, 82 and 64% (s.e.= 9) for HxH, HxBH, BxH and BxBH heifers respectively. No significant genotype differences were obtained in the height, width and size of the pelvic opening of the heifers, measured just prior to the beginning of the mating season at 26 months of age.


2009 ◽  
Vol 49 (6) ◽  
pp. 399 ◽  
Author(s):  
D. J. Johnston ◽  
S. A. Barwick ◽  
N. J. Corbet ◽  
G. Fordyce ◽  
R. G. Holroyd ◽  
...  

A total of 2115 heifers from two tropical genotypes (1007 Brahman and 1108 Tropical Composite) raised in four locations in northern Australia were ovarian-scanned every 4–6 weeks to determine the age at the first-observed corpus luteum (CL) and this was used to define the age at puberty for each heifer. Other traits recorded at each time of ovarian scanning were liveweight, fat depths and body condition score. Reproductive tract size was measured close to the start of the first joining period. Results showed significant effects of location and birth month on the age at first CL and associated puberty traits. Genotypes did not differ significantly for the age or weight at first CL; however, Brahman were fatter at first CL and had a small reproductive tract size compared with that of Tropical Composite. Genetic analyses estimated the age at first CL to be moderately to highly heritable for Brahman (0.57) and Tropical Composite (0.52). The associated traits were also moderately heritable, except for reproductive tract size in Brahmans (0.03) and for Tropical Composite, the presence of an observed CL on the scanning day closest to the start of joining (0.07). Genetic correlations among puberty traits were mostly moderate to high and generally larger in magnitude for Brahman than for Tropical Composite. Genetic correlations between the age at CL and heifer- and steer-production traits showed important genotype differences. For Tropical Composite, the age at CL was negatively correlated with the heifer growth rate in their first postweaning wet season (–0.40) and carcass marbling score (–0.49), but was positively correlated with carcass P8 fat depth (0.43). For Brahman, the age at CL was moderately negatively genetically correlated with heifer measures of bodyweight, fatness, body condition score and IGF-I, in both their first postweaning wet and second dry seasons, but was positively correlated with the dry-season growth rate. For Brahman, genetic correlations between the age at CL and steer traits showed possible antagonisms with feedlot residual feed intake (–0.60) and meat colour (0.73). Selection can be used to change the heifer age at puberty in both genotypes, with few major antagonisms with steer- and heifer-production traits.


2009 ◽  
Vol 49 (12) ◽  
pp. 1086 ◽  
Author(s):  
A. K. Esmailizadeh ◽  
O. Dayani ◽  
M. S. Mokhtari

The objective of this study was to investigate to what extent fertility and lambing season of fat-tailed ewes raised under an extensive production system are related to liveweight, body condition and changes around mating. Ewe liveweight and body condition score (BSC) were recorded in June, July and August over a period of 3 years (1999–2001) in 11 flocks (eight flocks of Kurdi breed and three flocks of Kurdi × Sanjabi crossbred). Both Kurdi and Sanjabi are native fat-tailed breeds in western Iran. In total, 3278 lambing records relating to 1592 ewes and data on mating date, liveweight and BCS of 1930 ewes (3975 records) were used for statistical analyses. The statistical model for bodyweight and body condition data included fixed effects of breed group, flock nested within breed group, year, the future lambing status following summer breeding (barren, autumn lambing and winter lambing), ewe age and all two-way interactions. Breed group had a significant effect on ewe liveweight (P < 0.01). However, there was no significant difference between BCS of the two breed groups around mating. Ewe liveweights measured in June, July and August had significant effects on fertility and lambing season (P < 0.01). Ewes that produced lambs were generally heavier at mating than barren ewes (P < 0.01). Autumn-lambing ewes were heavier than winter-lambing ewes in June and July (P < 0.01). Effects of changes in liveweight on fertility and lambing season were significant (P < 0.01). The effects of BCS in June, July and August (P < 0.01) and changes in BCS during the mating period (P < 0.05) on fertility and lambing season were also significant. The mean BCS (in June and July) of autumn-lambing ewes was greater than that of the winter-lambing and barren ewes (P < 0.05). The proportion of autumn-lambing ewes significantly increased as BCS in July increased, whereas the proportion of barren ewes decreased (P < 0.01). Fertility was associated with age so that as the age of the ewes increased from 2 to 7 years, the proportion of barren ewes significantly decreased from 29 to 5% (P < 0.01). There was a relatively high proportion of very thin ewes of 2 and 3 years of age. These findings imply that low body condition is a particular problem in younger ewes suggesting the importance of giving special nutritional treatment to younger ewes to reduce the proportion of barren ewes.


2007 ◽  
Vol 19 (1) ◽  
pp. 220
Author(s):  
G. A. Bo ◽  
L. C. Peres ◽  
D. Pincinato ◽  
M. de la Rey ◽  
R. Tribulo

An experiment was designed to evaluate the effect of the interval between thawing to deposition of the embryo into the uterine horn on pregnancy rates of in vivo-produced frozen–thawed embryos in 1.5 M ethylene glycol (direct transfer). Data were collected from 1122 embryo transfers performed in the same farm (Estancia El Mangrullo, Lavalle, Santiago del Estero, Argentina) during the spring and summer of 2004/05 and 2005/06 (6 replicates, ambient temperature between 20 and 40�C). Recipients used in all replicates were non-lactating, cycling, multiparous Bos taurus � Bos indicus crossbred cows with body condition score between 3 and 4 (1 to 5 scale) that were synchronized using fixed-time embryo transfer protocols. Briefly, the synchronization treatments consisted of the insertion of a Crestar ear implant (Intervet, Sao Paulo, Brazil) or a progesterone-releasing device (DIB; Syntex SA, Buenos Aires, Argentina), plus 2 mg of estradiol benzoate (EB; Syntex) intramuscularly (IM) on Day 0, and 400 IU of eCG (Folligon 5000; Intervet, or Novormon 5000; Syntex) IM plus 150 �g d-cloprostenol IM (Preloban; Intervet, or Ciclase; Syntex) on Day 5. Progestin devices were removed on Day 8 and all cows received 1 mg of EB IM on Day 9. All cows were examined by ultrasonography on Day 16 and those with a luteal area &gt;76 mm2 (by calculating the area of the CL minus the area of the cavity) received, on Day 17, frozen–thawed embryos by nonsurgical transfer. All embryos were Grade 1, and all were frozen in 1.5 M ethylene glycol at the Embryo Plus Laboratory (Brits, South Africa). After being stored in liquid nitrogen, the embryos were plunged directly (no air thawing) in a 30�C water bath for 30 s, and then transferred to the recipient cows by either one of two technicians. Based on the interval between thawing and transfer, the transfers were classified as being in one of 3 groups: Group 1: &lt;3 min; Group 2: 3 to 6 min; and Group 3: 6 to 16 min. The main reason for delayed transfers beyond 6 min was the replacement of one recipient for another because of difficulty in threading the cervix (1% of the total transfers) or a recipient falling down into the chute or with very bad disposition and behavior. Pregnancy was determined by ultrasonography 28 to 35 days after fixed-time embryo transfer, and data were analyzed by logistic regression. There were no effects of replicate, technician, CL area, recipient body condition score, embryo stage, and time from thawing to transfer on pregnancy rates. Pregnancy rates in the 3 thawing to transfer intervals were: Group 1: 215/385, 55.8%; Group 2: 372/655, 56.8%; Group 3: 42/82, 51.2%; P &gt; 0.6. These results may be interpreted to suggest that there is no significant effect of time from thawing to transfer (up to 16 min) in direct transfer embryos using Bos taurus � Bos indicus recipients transferred at a fixed time.


2008 ◽  
Vol 20 (1) ◽  
pp. 90 ◽  
Author(s):  
J. Small ◽  
F. Dias ◽  
L. Pfeifer ◽  
K. Lightfoot ◽  
M. Colazo ◽  
...  

In previous studies, giving eCG at CIDR removal significantly increased the pregnancy rate after timed-AI in beef cows. However, eCG is not universally available. Therefore, we tested the hypothesis that giving pFSH at CIDR removal might improve the pregnancy rate in a CIDR-based, Cosynch protocol in postpartum, suckled Bos taurus beef cows; a secondary objective was to compare pregnancy rates when GnRH v. pLH was used to synchronize wave emergence and ovulation. This work was conducted as two experiments (separate locations). All cows were given a CIDR (containing 1.9 g progesterone; Pfizer Animal Health, Montreal, QC, Canada) on Day 0 (without regard to stage of estrous cycle or cyclicity). On Day 7, CIDRs were removed, all cows were concurrently given 25 mg PGF (Lutalyse; Pfizer Animal Health, Groton, CT, USA), half were given 20 mg pFSH (Folltropin-V; Bioniche Animal Health, Belleville, ON, Canada), and all cows were timed-AI 54 h later (Day 9). In Experiment 1, 240 cows [94 � 10.8 days postpartum; body condition score (BCS: 1 = emaciated, 9 = obese; mean � SD): 5.8 � 0.4] were used; at CIDR insertion and AI, cows were allocated to receive either 100 µg GnRH (n = 160; Cystorelin, Merial Canada Inc., Victoriaville, QC, Canada) or 12.5 mg pLH (n = 80; Lutropin-V, Bioniche Animal Health). In Experiment 2, 109 cows (59.2 � 19.5 days postpartum; BCS: 5.6 � 1.1) were used; all received 100 µg GnRH (Cystorelin) at CIDR insertion and AI. In Experiment 1, three cows that lost their CIDR were excluded; pregnancy rates after timed-AI (logistic regression, backward selection: parity, pFSH, synchronizing treatment, and their interactions) were not different between cows given pFSH v. control cows (64.7 v. 65.2%; P > 0.80), nor between cows given GnRH v. pLH (62.7 v. 69.6%; P = 0.91). However, there was an interaction (P < 0.04) between parity and the synchronizing treatment; in primiparous cows, pregnancy rates were significantly lower in those given GnRH v. pLH (59.3 v. 83.3%). In Experiment 2, pregnancy rates after timed-AI (logistic regression, backward selection: parity, pFSH, and their interaction) were not different between cows given pFSH v. control cows (38.2 v. 42.6%; P > 0.6). In conclusion, our hypothesis was not supported; giving pFSH at CIDR removal did not significantly improve the pregnancy rate in a CIDR-based, Cosynch protocol in postpartum, suckled Bos taurus beef cows.


2015 ◽  
Vol 27 (1) ◽  
pp. 97
Author(s):  
G. A. Pessoa ◽  
A. P. Martini ◽  
J. M. Trentin ◽  
D. R. Dotto ◽  
H. L. D. Neri ◽  
...  

The aim of this study was to compare 3 methods for synchronization of ovulation in anestrous beef cows. The hypothesis of this study was to determine whether low doses of hCG has superior efficacy to cypionate to induce ovulation in anestrous cows and provide higher pregnancy rate in oestrus-synchronization programs. Synchronization of ovulation and conception rate to timed AI (TAI) were evaluated in anestrus Bos taurus taurus suckling beef cows 45 ± 15 days postpartum and with body condition score of 2.9 (1 to 5) maintained in a native pastured system in the south of Brazil. Females were evaluated with ultrasound on the Day 0 (D0) of the protocol (Day 0), day 8 (D8), immediately before TAI (D10), and 7 days after TAI (Day 17). All cows were synchronized with an intravaginal progesterone-releasing device (IPRD; 0.75 g of progesterone, Prociclar®, Hertape Calier Animal Health, Juatuba, Brazil) and 2 mg IM of oestradiol benzoate (EB; Benzoato HC®) on D0. On Day 8, the IPRD was removed and 150 μg of D (+) cloprostenol (Veteglan Luteolytic®), and 25 IU IM FSH/LH (Pluset®) were administered. Females of the EC (n = 84) group received 1 mg IM of oestradiol cypionate (EC; Cipionato HC®). Females on D8 of the hCG (n = 81) group received 500 IU IM of hCG (Vetecor®, Hertape Calier) at the time of TAI. The females of the EC + hCG group (n = 83) received both treatments. All cows were submitted to TAI 54 h after withdrawal of IPRD. A part of the cows (n = 102) had the ovulation evaluated every 12 h from the withdrawal of IPRD [EC (n = 34), hCG (n = 34), and hCG + EC (n = 33)]. Statistical analysis was performed using SAS PROC GLIMMIX. The dominant follicle diameter (FD) on Day 8 (8.7 ± 0.2, 8.8 ± 0.2, 8.6 ± 0.2) did not differ between treatments EC, EC + hCG, or hCG (P = 0.79). However, the FD on D10 was higher (P = 0.001) for cows treated with hCG (12.9 ± 0.3) compared with cows from the EC (11.3 ± 0.2) or EC + hCG group (11.8 ± 0.2). The interval (h) between the withdrawal of IPRD and ovulation was lower (P = 0.01) for the hCG group, (71.2 ± 1.7) compared with the groups treated with EC or EC + hCG (76.6 ± 2.18 and 74.2 ± 1.65), respectively. The ovulation rate did not differ (P = 0.61) among the EC (85.2%, 29/34), hCG (91.1%, 31/34), or EC + hCG groups (90.9%, 30/33). Corpus luteum diameter (mm) was higher (P = 0.04) on D17 for the hCG-treated group (21.4 ± 0.3) compared with others treatments (EC = 19.1 ± 0.8 or EC + hCG = 20.4 ± 0.8). However, the plasma progesterone levels on D17 were EC = 2.0 ± 0.1, hCG = 2.4 ± 0.1, and EC + hCG = 2.3 ± 0.1 ng mL–1 (P = 0.19), and the conception rate on the 28th day after TAI (EC = 43.0%; hCG = 47.0%, and EC + hCG = 48.8%; P = 0.76) was also similar. The hCG determined smallest ovulation interval, but similar rates of pregnancy were observed with both treatments.


2010 ◽  
Vol 22 (1) ◽  
pp. 177 ◽  
Author(s):  
M. Ramos ◽  
L. Cutaia ◽  
P. Chesta ◽  
G. A. Bó

Two experiments were designed to evaluate the effect of the timing of fixed-time AI (FTAI) in relation to the removal of an intravaginal progesterone-releasing device (1 g of progesterone, DIB, Syntex SA, Buenos Aires, Argentina) on pregnancy rates in Bos indicus × Bos taurus cross-bred heifers. In experiment 1, 285 Bonsmara × zebu cross-bred heifers, between 18 and 24 months of age and with a body condition score (BCS) between 3.0 and 3.5 (1-5 scale) were used. On the day of initiation of treatment (Day 0), the heifers’ ovaries were palpated (92% of them had a CL) and they received a new DIB plus 2 mg of estradiol benzoate (EB; Syntex SA) and 250 μg of cloprostenol (Ciclase DL, Syntex SA). On Day 8, DIB devices were removed and all heifers received 250 μg of Ciclase plus 0.5 mg of estradiol cypionate (ECP; Cipiosyn, Syntex SA). At that time the heifers were randomly divided to receive FTAI between 48 to 49 h, 53 to 54 h, or 58 to 59 h after DIB removal. The heifers underwent FTAI with semen from 4 bulls by 2 inseminators. In experiment 2, 260 heifers from the same group as those used in experiment 1 (87% with a CL) were treated exactly as those in experiment 1, except that previously used DIB was inserted on Day 0. Pregnancy diagnosis was performed 30 days post-fixed-time AI by ultrasonography. The data were analyzed by logistic regression, taking into account the effect of time of FTAI, semen, and inseminator on pregnancy rates. In experiment 1, pregnancy rates were lower (P = 0.04) in the heifers undergoing FTAI between 48 and 49 h after DIB removal (46/95, 48.4%) than those undergoing FTAI 53 to 54 h (61/99, 61.6%) or 58 to 60 h (57/91, 62.6%) after DIB removal. However, no differences in pregnancy rates were found (P = 0.72) in experiment 2 between the 3 treatment groups, with 39/91 (42.9%) for the 48 to 49 h group, 45/89 (50.6%) for the 53 to 54 h group, and 35/89 (43.8%) for the 58 to 59 h group. There was no effect of the semen or inseminator (P > 0.2) in either experiment. We conclude that when Bos indicus × Bos taurus beef heifers are synchronized with new DIB devices and ECP, higher pregnancy rates are obtained in heifers undergoing FTAI late (between 53 to 60 h after DIB removal) than in those undergoing FTAI early (48 to 49 h after DIB removal). However, time of insemination does not apparently affect pregnancy rates when Bos indicus × Bos taurus beef heifers are synchronized with previously used DIB devices and ECP.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1408
Author(s):  
Melissa Dorn ◽  
Anja Becher-Deichsel ◽  
Barbara Bockstahler ◽  
Christian Peham ◽  
Gilles Dupré

Laparoscopy is a growing field in veterinary medicine, although guidelines are lacking. The objective of this study was to evaluate the pressure–volume curve during capnoperitoneum in cats. A total of 59 female cats were scheduled for routine laparoscopy. Pressure and volume data were recorded and processed, and the yield point of the curve was calculated using a method based on a capacitor discharging function. For the remaining 40 cats, a linear-like pressure–volume curve was observed until a yield point with a mean cutoff pressure (COP) of 6.44 ± 1.7 mmHg (SD) (range, 2.72–13.00 mmHg) and a mean cutoff volume (COV) of 387 ± 144.35 mL (SD) (range, 178.84–968.43 mL) was reached. The mean mL/kg CO2 value in cats was 208 ± 34.69 mL/kg (range, 100.00–288.46 mL/kg). The COV correlated with COP and body weight but not with body condition score (BCS). COP correlated only with the COV. This study suggests that feline patients have a pressure–volume curve similar to that of canine patients, and the same pressure limit recommendations can be used for both species. After a yield point of 6.44 mmHg is reached, the increment in volume decreases exponentially as the intra-abdominal pressure (IAP) increases.


2005 ◽  
Vol 17 (2) ◽  
pp. 234 ◽  
Author(s):  
R. Tribulo ◽  
E. Balla ◽  
L. Cutaia ◽  
G.A. Bo ◽  
P.S. Baruselli ◽  
...  

Although several studies have investigated the relationship between circulating progesterone and pregnancy rates in cattle, the beneficial effect of treatments that increase progesterone concentrations, by insertion of a progesterone (P4) releasing device or induction of an accessory CL with hCG, GnRH, or LH treatment, has resulted in inconsistent effects on pregnancy rates in embryo recipients. An experiment was designed to evaluate the effect of hCG or GnRH treatment, given at the time of embryo transfer without estrus detection, on pregnancy rates in recipients treated with intrauterine P4-releasing devices, estradiol benzoate (EB), and eCG. The experiment was performed in two replicates; non-lactating Bos taurus × Bos indicus crossbred beef cows with a body condition score between 2.5 to 3.5 (1-to-5 scale) were used (replicate 1, n = 180; replicate 2, n = 140). All cows received 1 g of P4 via a P4-releasing device (DIB, Syntex, Argentina) and 2 mg EB i.m. (Syntex) on Day 0, and 400 IU of eCG i.m. (Novormon 5000, Syntex) plus 150 μg d(+)cloprostenol i.m. (Ciclase, Syntex) on Day 5. DIBs were removed on Day 8 and all cows received 1 mg EB i.m. on Day 9. Recipients were not observed for signs of estrus, and those >1 CL, or a single CL with an area >256 mm2, received 195 Grade 1 and 46 Grade 2 frozen/thawed “direct transfer” embryos on Day 17. At the time of embryo transfer, recipients were randomly allocated to 1 of 3 treatment groups to receive 1500 IU hCG (Ovusyn, Syntex), 50 μg Lecirelina (GnRH, Gonasyn, Syntex), or no treatment (control) at that time. Ovarian ultrasonography was performed on Day 0 to determine ovarian status (only cows with a CL or a follicle >10 mm and uterine tone were used), on Day 17 to measure CL area, and 40 days after embryo transfer to determine pregnancy status. Data were analyzed by logistic regression and the effects of replication, technician, treatment, and embryo quality were considered in the model. From the 320 recipients treated with a DIB plus EB and eCG, 241 (75.3%) were selected to receive an embryo. Nine (3.7%) and 1 (0.4%) of the selected recipients had 2 and 3 CL, respectively. Pregnancy rates did not differ between replicates (replicate 1: 80/140, 57.1%; and replicate 2: 57/101, 56.4%; P = 0.84), technicians (technician 1: 65/118, 55.1%; and technician 2: 72/123, 58.5%; P = 0.64), or treatments (hCG: 43/80, 53.8%; GnRH: 45/83, 54.2%; and control: 49/78, 62.8% P = 0.99). However, pregnancy rates were higher (P = 0.001) in recipients receiving Grade 1 embryos (121/195, 62.1%) than in those receiving Grade 2 embryos (16/46, 34.8%). GnRH or hCG treatment at the time of embryo transfer did not increase pregnancy rates in recipients synchronized with P4 releasing devices, EB, and eCG. Research was supported by Syntex S.A., Estancia El Mangrullo S.A., and Agencia Cordoba Ciencia S.E.


Sign in / Sign up

Export Citation Format

Share Document