scholarly journals Effect of soil application of neem cake amended with Trichoderma and Pseudomonas fluorescens on soil health and yield of tomato crop

2021 ◽  
Vol 5 ◽  
Author(s):  
Robert Axelrod ◽  
Lydia Palma Miner ◽  
Jean S. VanderGheynst ◽  
Christopher W. Simmons ◽  
Jesús D. Fernandez-Bayo

Insect farming has the potential to transform abundant residual biomass into feed that is compatible with non-ruminant animal production systems. However, insect cultivation generates its own by-products. There is a need to find valuable and sustainable applications for this material to enable commercial-scale insect farming. Soil application of by-products, which may be either basic broadcasting incorporation or part of a sustainable soil borne pest management practice, such as biosolarization, could offer an agricultural outlet. The objective of this study was to assess the potential of applying black soldier fly larvae (BSFL)-digested substrate as soil amendment for soil biosolarization and evaluate its impact on soil health. Sandy loam (SL) and sandy clay loam (CL) soils amended with BSFL-digested almond processing residues, i.e., spent pollinator hulls (SPH), at 2% dry weight (dw) were incubated under aerobic and anaerobic conditions for 15 days under a daily fluctuating temperature-interval (30–50°C). The microbial respiration, pH, electrical conductivity, volatile fatty acids, macronutrients, and germination index using radish seeds (Raphanus sativus L.) were quantified to assess the soil health after amendment application. Incubation showed a statistically significant (p < 0.05) increase in electrical conductivity related to amendment addition and a decrease potentially linked to microbiological activity, i.e., sequestering of ions. Under aerobic conditions, SPH addition increased the CO2-accumulation by a factor of 5–6 compared to the non-amended soils in SL and CL, respectively. This increase further suggests a higher microbiological activity and that SPH behaves like a partially stabilized organic material. Under anaerobic conditions, CO2-development remained unchanged. BSFL-digested residues significantly increased the carbon, nitrogen, C/N, phosphate, ammonium, and potassium in the two soil types, replenishing soils with essential macronutrients. However, greenhouse trials with lettuce seeds (Lactuca sativa) lasting 14 days resulted in a decrease of the biomass by 44.6 ± 35.4 and 35.2 ± 25.3% for SL and CL, respectively, compared to their respective non-amended soil samples. This reduction of the biomass resulted from residual phytotoxic compounds, indicating that BSFL-digested SPH have the potential to be used for biosolarization and as soil amendments, depending on the concentration and mitigation strategies. Application and environmental conditions must be carefully selected to minimize the persistence of soil phytotoxicity.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1444 ◽  
Author(s):  
Asmat Ullah ◽  
Muqarrab Ali ◽  
Khurram Shahzad ◽  
Fiaz Ahmad ◽  
Shahid Iqbal ◽  
...  

Humus is the stable form of added crop and animal residues. The organic matter after a long-term decomposition process converts into humic substances. The naturally occurring humus is present in less amount in soils of the arid and semi-arid regions. The addition of commercially available humic acid can, therefore, contribute to improving soil health and crop yields. The present study was conducted to evaluate the effect of potassium humate, applied through soil seed dressing, on cotton productivity and fiber quality attributes. Seed dressing with potassium humate was done at the rate of 0, 100, 150 and 200 mL kg−1 seed while in soil potassium humate was applied at the rate of 0, 10, 20 and 30 L ha−1. Results showed that the combined application of potassium humate by seed dressing and through soil application improved the soil properties, productivity and fiber quality traits of cotton. All levels of soil applied potassium humate (10, 20 and 30 L ha−1) performed better over seed dressing in terms of cotton productivity and fiber quality attributes. Among the soil application rates, 20 L ha−1 potassium humate proved better as compared to other rates (0, 10 and 30 L ha−1). Higher soil application of potassium humate (30 L ha−1) showed depressing effects on all the traits studied like the reduction of 12.4% and 6.6% in Ginning out turn and fiber length, respectively, at a seeding dressing of 200 mL kg−1. In conclusion, potassium humate seed dressing and soil application at the rate of 200 mL kg−1 and 20 L ha−1, respectively, is a better approach to improve cotton productivity. Soil potassium humate should not exceed a rate of 20 L ha−1 when the seed dressing of potassium is also practiced.


2016 ◽  
Vol 8 (1) ◽  
pp. 305-309
Author(s):  
R. P. S. Jetawat ◽  
K. Mathur

The experiment was conducted to study fungicides, biocontrol agents and botanicals for management of ashwagandha root rot disease. Ashwagandha root rot disease caused by two pathogen Fusarium solani and Rhizoctonia solani. In field trial, seed treatments with integration of fungicides, neem cake manure, neem oil and Trichoderma viride agent evaluated as seed treatments individually as well as in different combination of seed treatment and soil application of neem cake was found effective integrated treatment (ST SAAF + neem cake manure + T. viride) and soil application of neem cake manure@500g/plot showed minimum per cent root rot and maximum per cent germination and maximum yield of Ashwagandha as compared to their individual applications over the untreated control.


Author(s):  
S. L. Godara ◽  
Narendra . Singh

Root rot caused by Rhizoctonia solani is an important disease of mothbean, under severe infestation it causes 58-68 % losses in grain yield. Three-year field experiments were conducted in hot arid conditions at Bikaner, Rajasthan during kharif seasons with the objective to find out suitable eco-friendly management strategies for root rot. The experiment was conducted on cv. RMO-225 with six different combination of Trichoderma harzianum + Pseudomonas fluorescens bio- agents viz, seed treatment, soil treatment and their combinations against the root rot disease and compared with an untreated control. Results of experiment showed that all the treatments brought significant decline in disease incidence and consequently enhancement of grain yield compared to control. The treatment having combination of Trichoderma harzianum + Pseudomonas fluorescens seed treatment (4+4 g/kg seed) + soil application of T. harzianum + P. fluorescens (1.25 +1.25 kg in 50 kg FYM for each/ha) had minimum (21.78 %) root rot incidence, highest grain yield (10.56 q /ha) and net return (Rs. 14,338/ha). The T. harzianum seed treatment 8 g/kg seed + soil application of T. harzianum 2.5kg in 100 kg FYM/ha was the next best treatment with 25.56 per cent disease incidence and 9.42 q/ha of grain yield. These treatments can provide an effective, economical and eco- friendly management of root rot of mothbean for cultivators.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1428
Author(s):  
Eirini Angelina ◽  
Efimia M. Papatheodorou ◽  
Triantafyllia Demirtzoglou ◽  
Nikolaos Monokrousos

Inoculation with beneficial microbes has been proposed as an effective practice for the improvement of plant growth and soil health. Since soil acts as a physicochemical background for soil microbial communities, we hypothesized that its management will mediate the effects of microbial inoculants on the indigenous soil microbes. We examined the effects of bacterial inoculants [Bacillus subtilis (Ba), Pseudomonas fluorescens (Ps), and both (BaPs)] on the growth of Lactuca sativa cultivated in soils that originated from an organic maize (OS) and a conventional barley (CS) management system. Moreover, the biomass and the community structure of the rhizosphere microbial communities and the soil enzyme activities were recorded. The root weight was higher in CS than OS, while the foliage length was greater in OS than CS treatments. Only in OS pots, inoculants resulted in higher biomasses of bacteria, fungi, and actinomycetes compared to the control with the highest values being recorded in Ps and BaPs treated soils. Furthermore, different inoculants resulted in different communities in terms of structure mainly in OS soils. For soil enzymes, the effect of the management system was more important due to the high organic matter existing in OS soils. We suggest that for microbial inoculation to be effective it should be considered together with the management history of the soil.


Sign in / Sign up

Export Citation Format

Share Document