scholarly journals Soil Application of Almond Residue Biomass Following Black Soldier Fly Larvae Cultivation

2021 ◽  
Vol 5 ◽  
Author(s):  
Robert Axelrod ◽  
Lydia Palma Miner ◽  
Jean S. VanderGheynst ◽  
Christopher W. Simmons ◽  
Jesús D. Fernandez-Bayo

Insect farming has the potential to transform abundant residual biomass into feed that is compatible with non-ruminant animal production systems. However, insect cultivation generates its own by-products. There is a need to find valuable and sustainable applications for this material to enable commercial-scale insect farming. Soil application of by-products, which may be either basic broadcasting incorporation or part of a sustainable soil borne pest management practice, such as biosolarization, could offer an agricultural outlet. The objective of this study was to assess the potential of applying black soldier fly larvae (BSFL)-digested substrate as soil amendment for soil biosolarization and evaluate its impact on soil health. Sandy loam (SL) and sandy clay loam (CL) soils amended with BSFL-digested almond processing residues, i.e., spent pollinator hulls (SPH), at 2% dry weight (dw) were incubated under aerobic and anaerobic conditions for 15 days under a daily fluctuating temperature-interval (30–50°C). The microbial respiration, pH, electrical conductivity, volatile fatty acids, macronutrients, and germination index using radish seeds (Raphanus sativus L.) were quantified to assess the soil health after amendment application. Incubation showed a statistically significant (p < 0.05) increase in electrical conductivity related to amendment addition and a decrease potentially linked to microbiological activity, i.e., sequestering of ions. Under aerobic conditions, SPH addition increased the CO2-accumulation by a factor of 5–6 compared to the non-amended soils in SL and CL, respectively. This increase further suggests a higher microbiological activity and that SPH behaves like a partially stabilized organic material. Under anaerobic conditions, CO2-development remained unchanged. BSFL-digested residues significantly increased the carbon, nitrogen, C/N, phosphate, ammonium, and potassium in the two soil types, replenishing soils with essential macronutrients. However, greenhouse trials with lettuce seeds (Lactuca sativa) lasting 14 days resulted in a decrease of the biomass by 44.6 ± 35.4 and 35.2 ± 25.3% for SL and CL, respectively, compared to their respective non-amended soil samples. This reduction of the biomass resulted from residual phytotoxic compounds, indicating that BSFL-digested SPH have the potential to be used for biosolarization and as soil amendments, depending on the concentration and mitigation strategies. Application and environmental conditions must be carefully selected to minimize the persistence of soil phytotoxicity.

2020 ◽  
Vol 42 (10) ◽  
pp. 463-471
Author(s):  
Chul-Hwan Kim ◽  
Kwanyoung Ko ◽  
Jongkeun Lee ◽  
Haegeun Chung

Objectives : Black soldier fly larvae (BSFL) are organisms that effectively decompose various types of organic waste including food waste, and food waste treatment using BSFL is attracting attention as a sustainable waste treatment method. However, food waste discharged from Korea has a wide variety of properties, and its high salt concentration limits its treatment by BSFL. Therefore, to increase the efficiency of food waste treatment using BSFL, it is necessary to increase the quality of food waste as a production medium for BSFL. In this study, the ratio of protein and fat was adjusted by adding bean sprouts and wheat brans to food wastes treated at high temperature under vacuum, and whether such medium is suitable for rearing BSFL was investigated.Methods : To improve the medium, the ratio of protein and fat was adjusted to approximately 2:1 by adding bean sprouts and bran residue to food waste. Subsequently, the growth and development rate of BSFL reared on chicken feed, food waste, food waste + bean sprouts, food waste + wheat bran were measured. Also, the decomposition rate of each medium was analyzed.Results and Discussion : The growth rate of BSFL grown on food waste + wheat bran medium was similar to that of BSFL reared on chicken feed. The speed of development at day 7 was also the fastest for BSFL reared with food waste + wheat bran medium and chicken feed. These results suggest that the mixed medium to which wheat bran has been added to food waste has the potential to be used as a commercial medium for BSFL production. The survival rate of BSFL was 89% or higher in all media.Conclusions : When food waste was used alone, BSFL development was poor compared to that in media combined with agricultural by-products such as bean sprouts and wheat bran. Therefore, to use food waste as a rearing medium of BSFL, it is necessary to adjust the ratio of protein and fat by adding various agricultural by-products and reduce salinity. For the improvement of food waste treatment technology using BSFL, mass rearing of useful insects such as BSFL, and promotion of the use of agricultural by-products, additional research is needed to optimize the composition of rearing medium based on food waste.


2020 ◽  
Vol 168 (6-7) ◽  
pp. 472-481 ◽  
Author(s):  
Shaphan Y. Chia ◽  
Chrysantus M. Tanga ◽  
Isaac M. Osuga ◽  
Xavier Cheseto ◽  
Sunday Ekesi ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
M. Gold ◽  
T. Fowles ◽  
J.D. Fernandez-Bayo ◽  
L. Palma Miner ◽  
C. Zurbrügg ◽  
...  

Black soldier fly larvae (BSFL) are widely used in recycling and upcycling of nutrients in agri-food by-products, but low and inconsistent BSFL rearing performance (i.e. larval growth, bioconversion rate, and substrate reduction) has been identified as a key challenge. The aims of this research were two-fold: (1) validate an existing closed rearing system design; and (2) assess whether a microbial inoculum derived from the rearing residue increases rearing performance. In controlled bench-scale experiments, BSFL were reared on tomato pomace (TP) and white wine pomace (WWP), along with food waste as control substrate. The two aims were assessed based on the following response variables: larval mass, substrate reduction, residue properties (i.e. pH, temperature, moisture content), and larval intestinal and residue microbiota. Higher BSFL mass (by 5.1 mg dry mass) at harvest on WWP and substrate reduction on TP (by 11.7% dry mass) in the closed system compared to the open system confirmed the potential of closed systems for rearing performance improvements of agri-food by-products. The rearing system also affected the residual moisture content and temperature, but only had a small effect on microbiota. Performance improvements by the closed rearing system design may be outweighed by insufficient aeration with pasty substrates and higher operational efforts for aeration and larval separation from the high-moisture residues. In contrast to the rearing system design, addition of the residue-derived microbial inoculum did not result in improved performance, nor did it alter intestinal and residue microbiota. Missing performance improvements could have been due to absent or low numbers of probiotic bacteria. The success of microbial substrate supplementation could be improved by studying effects of larval-associated microbes and developing cultivation methods that selectively amplify the beneficial (yet unknown) members of the microbial community. Our investigations aimed to increase the valorisation of low-value agri-food by-products in BSFL rearing.


animal ◽  
2018 ◽  
Vol 12 (8) ◽  
pp. 1672-1681 ◽  
Author(s):  
S. Mancini ◽  
I. Medina ◽  
V. Iaconisi ◽  
F. Gai ◽  
A. Basto ◽  
...  

2021 ◽  
pp. 101034
Author(s):  
M. Heuel ◽  
C. Sandrock ◽  
F. Leiber ◽  
A. Mathys ◽  
M. Gold ◽  
...  

2021 ◽  
pp. 101400
Author(s):  
Fernanda M. Tahamtani ◽  
Emma Ivarsson ◽  
Viktoria Wiklicky ◽  
Cecilia Lalander ◽  
Helena Wall ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 6074
Author(s):  
Esther Khayanga Sumbule ◽  
Mary Kivali Ambula ◽  
Isaac Maina Osuga ◽  
Janice Ghemoh Changeh ◽  
David Miano Mwangi ◽  
...  

The acceptance of eco-friendly black soldier fly larvae meal (BSFLM) as sustainable alternative protein ingredient in poultry feeds continues to gain momentum worldwide. This study evaluates the impact of BSFLM in layer chick and grower diets on the growth, carcass quality and economic returns. Mean weekly weight gain and total live weight per chick and grower varied significantly. The highest final weight gain was achieved when birds were provided diet with 25.6% BSFLM. Average daily feed intake (ADFI), average daily weight gain (ADG) and overall weight gain of the chick varied significantly, except for the feed conversion ratio (FCR). For grower birds, ADFI, ADG, FCR and overall weight gain did not vary significantly across the various feeding regimes. The weight of the wings and drumsticks had a quadratic response with a maximum weight obtained at 33% inclusion of BSFLM. The weight of the internal organs were not significantly affected by dietary types. Positive cost–benefit ratio and return on investment was recorded for diet types with higher BSFLM inclusion levels (>75%). Diets with 25% and 100% BSFLM inclusion were the most suitable and cost-effective, respectively. Thus, BSFLM represents a promising alternative source of protein that could be sustainably used in the poultry industries.


Sign in / Sign up

Export Citation Format

Share Document