scholarly journals Natural gas heating in Serbian settlements according to urbanity parameters

2008 ◽  
Vol 6 (1) ◽  
pp. 139-153 ◽  
Author(s):  
Dejan Brkic

Natural gas can be directly used for heating of flats by gas distribution system. Indirectly, heating power plant can disburse natural gas and deliver hot water or steam for heating of flats. Decision of optimal way for gas heating usage is done based on spatial disposal of building, number and size of buildings in settlement, etc. Optimal solution, between gas distribution and district heating system (local or district heating by natural gas), can be done according to methodology (model approach) shown in this paper. According to variety of Serbian settlements (in density, size and layout of buildings) model which has ability to represent their different characteristics is formed. This model could be simple and useful tool for initial decision about energy supply system.

2017 ◽  
Author(s):  
Dejan Brkić

Natural gas can be directly used for heating of flats by gas distribution system. Indirectly, heating power plant can disburse natural gas and deliver hot water or steam for heating of flats. Decision of optimal way for gas heating usage is done based on spatial disposal of building, number and size of buildings in settlement, etc. Optimal solution, between gas distribution and district heating system (local or district heating by natural gas), can be done according to methodology (model approach) shown in this paper. According to variety of Serbian settlements (in density, size and layout of buildings) model which has ability to represent their different characteristics is formed. This model could be simple and useful tool for initial decision about energy supply system.


2017 ◽  
Author(s):  
Dejan Brkić ◽  
Toma I. Tanasković

Natural gas can be used for satisfying population needs for heating, either directly by bringing the gas to the dwellings through the gas distribution system and combusting it in the domestic boiler (gas distribution system—G) or indirectly by combusting the natural gas in the heating plant and distributing the heat energy to the dwellings through the district-heating (DH) system. The selection of a certain type of heating system is made according to the disposition of buildings in the area, their number, size, insulation quality, etc. Based on these characteristics, calculations of investments and exploitation costs have been made for both heating systems and a comparison has been made for all of the 96 presented cases. Almost each type of real settlement can be represented by one of the types of the conditional urban area that are introduced in the paper. The main goal of this paper is to establish a general model to achieve coordinated development of centralized energy supply systems fueled by natural gas, based on defined and accepted criteria. A structure analysis of centralized systems for energy supply has been done with accent on their pipelines.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 93 ◽  
Author(s):  
Rosaura Castrillón Mendoza ◽  
Javier Rey Hernández ◽  
Eloy Velasco Gómez ◽  
Julio San José Alonso ◽  
Francisco Rey Martínez

In order to achieve the objectives of the European 20/20/20 strategy, and to obtain a greater energy efficiency, integration of renewable energies and the reduction of carbon emissions, a District Heating (DH) system has been designed by the University of Valladolid (UVa), Spain, one of the most important DH fed by biomass fuel in Spain, supplying heating and domestic hot water (DHW) to 31 buildings in Valladolid, the majority of them, educational buildings on the University Campus. The aims of this paper were to study the change from an energy system fueled by natural gas to District Heating by biomass in a building on the campus of the University of Valladolid—the School of Engineering (EII)—studying its consumption from its connection to the District Heating system. An energy management methodology such as ISO 50001 is carried out, applied to efficiency systems in buildings, thus establishing new criteria of sustainability and economic value. In this paper, energy management will also be analyzed in accordance with the proposed tools of an Energy Management System (EMS) applied to the EII building, through the measurement of energy parameters, calculation of thermal consumption, thermal energy savings as a result of the change from system to District Heating by biomass, economic savings, reduction of environmental impact and indicators of thermal efficiency I100 and CUSUM indicator. Finally, the primary renewable and non-renewable energy efficiency indicators for the new District Heating system will be determined. The concept of the near Zero Energy Buildings is defined in the European Union (EU) in order to analyze an approach to an nZEB which results from replacing the natural gas heating system by a biomass District Heating system.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


2020 ◽  
Vol 160 ◽  
pp. 01004 ◽  
Author(s):  
Stanislav Chicherin ◽  
Lyazzat Junussova ◽  
Timur Junussov

Proper adjustment of domestic hot water (DHW) load structure can balance energy demand with the supply. Inefficiency in primary energy use prompted Omsk DH company to be a strong proponent of a flow controller at each substation. Here the return temperature is fixed to the lowest possible value and the supply temperature is solved. Thirty-five design scenarios are defined for each load deviation index with equally distributed outdoor temperature ranging from +8 for the start of a heating season towards extreme load at temperature of -26°C. All the calculation results are listed. If a flow controller is installed, the customers might find it suitable to switch to this type of DHW supply. Considering an option with direct hot water extraction as usual and a flow controller installed, the result indicates that the annual heat consumption will be lower once network temperatures during the fall or spring months are higher. The heat load profiles obtained here may be used as input for a simulation of a DH substation, including a heat pump and a tank for thermal energy storage. This design approach offers a quantitative way of sizing temperature levels in each DH system according to the listed methodology and the designer's preference.


2020 ◽  
Vol 2 (4) ◽  
pp. 392-405
Author(s):  
Francesco Neirotti ◽  
Michel Noussan ◽  
Marco Simonetti

The Life Cycle Assessment methodology has proven to be effective in evaluating the impacts of goods production throughout their life cycle. While many studies are available on specific products, in recent years a growing interest is related to the analysis of services, including energy supply for final customers. Different LCA evaluations are available for electricity, while the heating and cooling sector has not yet been properly investigated. The objective of this study is the analysis of the specific impacts of the heat supplied to the final users connected to a district heating system, in comparison with traditional individual natural gas boilers, which represent the baseline heating solution in several urban contexts in Europe. The results show that the comparison is heavily dependent on the allocation method used for combined heat and power plant production. District Heating impact on heat supplied to the users can vary from 0.10 to 0.47 kgCO2eq/kWh, while distributed natural gas boilers present an overall impact equal to 0.27 kgCO2eq/kWh.


2016 ◽  
Vol 4 (1) ◽  
pp. 12-24
Author(s):  
Balint Horvath ◽  
Maria Borocz ◽  
Sandor Zsarnoczai ◽  
Csaba Fogarassy

Abstract Natural gas is still the primary input of the Hungarian heating and cooling systems, therefore it still makes most of the overheads. One of the main obstacles of a competitive district heating system is the public opinion which still considers this service more expensive than the traditional heating forms. According to the absolute numbers this assumption might be valid but from a more accurate economic perspective, heat production has more aspects to stress. Most people forget about the simple fact that the maintenance costs of natural gas based systems are rather outsourced to the consumer than in the case of district heating. Furthermore, the uneven rate of the fixed and variable costs of this technology does not prove to be optimal for service developments. Investigating the future tendencies highlight that encouraging the efficiency improvement of district heating and the spread of technological innovation in the sector does not belong to the top priorities. Still, avoiding this problem it could lead serious deadweight losses in the case of the heating sector.


Vestnik MGSU ◽  
2019 ◽  
pp. 748-755 ◽  
Author(s):  
Saule K. Abildinova ◽  
Stanislav V. Chicherin

Introduction. The purpose of this investigation is to show what changes introduced in the mathematical model of a district heating system are capable of considerable improving the convergence of simulation results and actual data. The study evaluates the work of heating supply establishments with their customers as well as analysis of the ways of enhancing pump equipment efficiency that allows saving electric energy or increasing output at the same energy consumption. Materials and methods. Engineering acceptance of newly introduced and reconstructed facilities is conducted, heat loads are corrected, disconnections and recurrent connections of indebted consumers are carried out. Studying data submitted by a local heat supply establishment shows that pump seals made from iron and steel are subject accelerated wear in the course of operation. Results. Three variants of the problem solution are suggested: making seals from bronze or stainless steel, prevention of unjustified increase of seal clearances as well as using labyrinth pump seals. This will allow increasing pump equipment efficiency by 5 to 7 % and save about 2 × 105 kW∙h of electrical energy for every pump or increase of output at the same energy consumption. Taking into account that a pump station is a part of the district heating system and unmachined inner surfaces of the pumps have a significant roughness, grinding of these surfaces can improve their hydraulic characteristics of the pumps. In the scope of the suggested method, the entire district heating system is considered not in the situation when actual load is equal to the sum of all the design loads and the pump equipment has manufacturer’s parameters, but accounting actual loads and characteristics. Conclusions. Mathematical model of district heating system heating and hydraulic mode that takes issues mentioned above into consideration would allow simulating joint operation of the heating and hot water supply systems at transient operation modes with higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document