The kinase module of the Mediator complex: an important signalling processor for the development and survival of plants

Author(s):  
Rekha Agrawal ◽  
Fajkus Jiří ◽  
Jitendra K Thakur

Abstract Mediator, a multisubunit protein complex, is a signal processor that conveys regulatory information from transcription factors to RNA polymerase II and therefore plays an important role in the regulation of gene expression. This megadalton complex comprises four modules, namely, the head, middle, tail, and kinase modules. The first three modules form the core part of the complex, whereas association of the kinase module is facultative. The kinase module is able to alter the function of Mediator and has been established as a major transcriptional regulator of numerous developmental and biochemical processes. The kinase module consists of MED12, MED13, CycC, and kinase CDK8. Upon association with Mediator, the kinase module can alter its structure and function dramatically. In the past decade, research has established that the kinase module is very important for plant growth and development, and in the fight against biotic and abiotic challenges. However, there has been no comprehensive review discussing these findings in detail and depth. In this review, we survey the regulation of kinase module subunits and highlight their many functions in plants. Coordination between the subunits to process different signals for optimum plant growth and development is also discussed.

2017 ◽  
Vol 61 (6) ◽  
pp. 675-685 ◽  
Author(s):  
Henri Batoko ◽  
Yasin Dagdas ◽  
Frantisek Baluska ◽  
Agnieszka Sirko

Autophagy is an essential catabolic pathway and is activated by various endogenous and exogenous stimuli. In particular, autophagy is required to allow sessile organisms such as plants to cope with biotic or abiotic stress conditions. It is thought that these various environmental signaling pathways are somehow integrated with autophagy signaling. However, the molecular mechanisms of plant autophagy signaling are not well understood, leaving a big gap of knowledge as a barrier to being able to manipulate this important pathway to improve plant growth and development. In this review, we discuss possible regulatory mechanisms at the core of plant autophagy signaling.


Genetika ◽  
2019 ◽  
Vol 51 (1) ◽  
pp. 261-274 ◽  
Author(s):  
Dong Zhu ◽  
Yanlin Liu ◽  
Man Jin ◽  
Guanxing Chen ◽  
Slaven Prodanovic ◽  
...  

Expansins are a group of plant cell wall loosening proteins that play important roles in plant growth and development. In this study, we performed the first study on the molecular characterization, transcriptional expression and functional properties of two wheat expansin genes TaEXPA2 and TaEXPB1. The results indicated that TaEXPA2 and TaEXPB1 genes had typical structural features of plant expansin gene family. As a member of ?-expansins, TaEXPA2 is closely related to rice OsEXPA17 while the ?- expansin member TaEXPB1 has closely phylogenetic relationships with rice OsEXPAB4. The genetic transformation to Arabidopsis showed that both TaEXPA2 and TaEXPB1 were located in cell wall and highly expressed in roots, leaves and seeds. Overexpression of TaEXPA2 and TaEXPB1 genes showed similar functions, causing rapid root elongation, early bolting, and increases in leaves number, rosette diameter and stems length. These results demonstrated that wheat expansin genes TaEXPA1 and TaEXPB2 can enhance plant growth and development.


1978 ◽  
Vol 200 (1140) ◽  
pp. 231-243 ◽  

The hormones known to be responsible for control of many aspects of plant growth and development are first briefly described. The effects of infection of plants by certain biotrophic parasites on hormone metabolism and function are then discussed, together with the associated developmental abnormalities. It is seen that though disease frequently does cause considerable changes in hormone levels, the reasons for these changes have only in very few cases been determined. Attention is drawn to the fact that toxins produced by biotrophic parasites may have hormone-like effects, though structurally unrelated to any known endogenous plant hormone.


2008 ◽  
Vol 35 (12) ◽  
pp. 1183 ◽  
Author(s):  
Barry S. Flinn

The plant extracellular matrix (ECM) includes a variety of proteins with critical roles in the regulation of plant growth, development, and responses to pests and pathogens. Several studies have shown that various ECM proteins undergo proteolytic modification. In mammals, the extracellular matrix metalloproteinases (MMPs) are known modifiers of the ECM, implicated in tissue architecture changes and the release of biologically active and/or signalling molecules. Although plant MMPs have been identified, little is known about their activity and function. Plant MMPs show structural similarity to mammalian MMPs, including the presence of an auto-regulatory cysteine switch domain and a zinc-binding catalytic domain. Plant MMPs are differentially expressed in cells and tissues during plant growth and development, as well as in response to several biotic and abiotic stresses. The few gene expression and mutant analyses to date indicate their involvement in plant growth, morphogenesis, senescence and adaptation and response to stress. In order to gain a further understanding of their function, an analysis and characterisation of MMP proteins, their activity and their substrates during plant growth and development are still required. This review describes plant MMP work to date, as well as the variety of genomic and proteomic methodologies available to characterise plant MMP activity, function and potential substrates.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 184 ◽  
Author(s):  
Zhen Yu ◽  
Dongyu Jia ◽  
Taibo Liu

Polyamines not only play roles in plant growth and development, but also adapt to environmental stresses. Polyamines can be oxidized by copper-containing diamine oxidases (CuAOs) and flavin-containing polyamine oxidases (PAOs). Two types of PAOs exist in the plant kingdom; one type catalyzes the back conversion (BC-type) pathway and the other catalyzes the terminal catabolism (TC-type) pathway. The catabolic features and biological functions of plant PAOs have been investigated in various plants in the past years. In this review, we focus on the advance of PAO studies in rice, Arabidopsis, and tomato, and other plant species.


2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 508e-508
Author(s):  
Bin Liu ◽  
Royal D. Heins

A concept of ratio of radiant to thermal energy (RRT) has been developed to deal with the interactive effect of light and temperature on plant growth and development. This study further confirms that RRT is a useful parameter for plant growth, development, and quality control. Based on greenhouse experiments conducted with 27 treatment combinations of temperature, light, and plant spacing, a model for poinsettia plant growth and development was constructed using the computer program STELLA II. Results from the model simulation with different levels of daily light integral, temperature, and plant spacing showed that the RRT significantly affects leaf unfolding rate when RRT is lower than 0.025 mol/degree-day per plant. Plant dry weight is highly correlated with RRT; it increases linearly as RRT increases.


Sign in / Sign up

Export Citation Format

Share Document