scholarly journals Hybrid Nd-Fe-B/barium ferrite magnetic materials with epoxy matrix

2012 ◽  
Vol 66 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Aleksandar Stajcic ◽  
Jasna Stajic-Trosic ◽  
Aleksandar Grujic ◽  
Mirko Stijepovic ◽  
Nada Lazic ◽  
...  

Lately a great attention has been paid to the research of bonded hybrid composites with improved dynamic mechanical capacities capable of replacing bonded Nd-Fe-B magnetic materials, by using the cheaper (ferrite) materials instead of the Nd-Fe-B powder while retaining the satisfying values of the maximal magnetic energy. The objective of this study is to assess how different contents of Nd-Fe-B and/or barium ferrite particles can affect morphological, dynamic mechanical and magnetic properties of bonded composite materials. The interactions between employed magnetic powders and the interactions between magnetic powders and polymer binder are considered. For the examination of the magnetic behaviour, a vibrating sample magnetometer (VSM) is used. Different shapes and sizes of the obtained hysteresis loops are used for comparison and prediction of the polymer bonded materials properties. The homogeneous distribution of the magnetic particles in the polymer matrix is validated using the scanning electron microscope (SEM). The elastic and damping behaviour examined by the dynamic mechanical analysis (DMA) show improved properties for hybrid composite materials.

2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
Heitor Luiz Ornaghi ◽  
Alexandre Sonaglio Bolner ◽  
Rudinei Fiorio ◽  
Ademir Jose Zattera ◽  
Sandro Campos Amico

2014 ◽  
Vol 1040 ◽  
pp. 29-33 ◽  
Author(s):  
Dmitry V. Wagner ◽  
Olga Dotsenko ◽  
Olga A. Ulyanova

In this article the possibility of production of composite materials with magnetic texture are discussed. For texturing of magnetic polymer materials the device was made. The W-type hexaferrites were synthesized using a standard ceramic technique. Magnetic materials with a texture based on barium ferrite were obtained. The electromagnetic properties of texture and non texture composites were measured in microwave. It was shown, that imaginary permeability of an isotropic sample 1.3 times more that sample with texture in a frequency range of 0.5 – 4 GHz.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chern Chiet Eng ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Hidayah Ariffin ◽  
Wan Md. Zin Wan Yunus ◽  
...  

In previous studies, the effect of the addition of 1 wt% hydrophilic nanoclay on polylactic acid (PLA)/polycaprolactone (PCL)/oil palm mesocarp fiber (OPMF) biocomposites was investigated by tensile properties, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The current studies focus on the effect of addition of 1 wt% hydrophilic nanoclay on mechanical (flexural and impact properties) and dynamic mechanical properties of composites. The composites were characterized by the Fourier transform infrared spectroscopy (FTIR) and dynamic mechanical analysis (DMA). FTIR spectra show that peak shifting occurs when 1 wt% hydrophilic nanoclay was added to composites. The addition of 1 wt% hydrophilic nanoclay successfully improves the flexural properties and impact resistance of the biocomposites. The storage modulus of biocomposites was decreased when nanoclay was added which indicates that the stiffness of biocomposites was reduced. The loss modulus curve shows that the addition of nanoclay shift twotgin composites become closer to each other which indicates that the incorporation of nanoclay slightly compatibilizes the biocomposites. Tanδindicated that hybrid composites dissipate less energy compared to biocomposites indicate that addition of clay to biocomposites improves fiber/matrix adhesion. Water sorption test shows that the addition of nanoclay enhances water resistance of composites.


2021 ◽  
Vol 16 (2) ◽  
pp. 051-060
Author(s):  
Michael Raj F ◽  
Sahaya Elsi S ◽  
Emina M S ◽  
Freeda S ◽  
Amala Midun Minther Singh A ◽  
...  

Polyester based composites were fabricated and characterized for their tensile, morphological and dynamic mechanical properties such as storage and loss moduli as a function of temperature. The morphological attributes were characterized by scanning electron microscopy (SEM) and COSLAB microscope. The morphological investigations have revealed a uniformly distributed polyester matrix of the composites. Dynamic mechanical analysis (DMA) revealed an enhancement in the energy dissipation ability of the composite 4GF and an average storage modulus of the composite 3GF/1FN relative to the soft polyester phase. The tensile modulus and tensile strength increased up to 0.5 %, accompanied by while the strain at break remained largely unaffected. Fractured surface morphology indicates that the failure mode of the composites undergoes a switch-over from matrix-controlled shear deformation to the filler-controlled loading of the composites for specific applications. Hence, the utilization of discarded fishnet incorporated composites mitigates the problem of waste disposal.


Sign in / Sign up

Export Citation Format

Share Document