scholarly journals Immobilization of horseradish peroxidase onto kaolin by glutaraldehyde method and its application in decolorization of anthraquinone dye

2016 ◽  
Vol 70 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Natasa Sekuljica ◽  
Nevena Prlainovic ◽  
Jelena Jovanovic ◽  
Andrea Stefanovic ◽  
Sanja Grbavcic ◽  
...  

The problem of environmental pollution day by day becomes more worrisome, primarily due to the large amounts of wastewater contaminated with various harmful organic compounds, discharged into the environment untreated or partially clean. Feasibility of use of horseradish peroxidase (Amoracia rusticana) in the synthetic dyes decolorization was approved by many researchers. Among a number of supports used for the immobilization, it was found that natural clay, kaolin has excellent features which are a precondition for obtaining biocatalysts with the excellent performances. For this reason, a horseradish peroxidase was immobilized onto kaolin using glutaraldehyde as a cross-linking agent. Obtained biocatalyst was applied in the decolorization of anthraquinone dye C. I. Acid Violet 109. Under determined optimal conditions (pH 4.0, hydrogen peroxide concentration 0.6 mM, dye concentration 30 mg L-1, temperature 24?C) around 76 % of dye decolorization was achieved. Reusability study showed that resulting biocatalyst was possible to apply four times in the desired reaction with relatively high decolorization percentage.

1991 ◽  
Vol 37 (12) ◽  
pp. 902-907 ◽  
Author(s):  
Maria B. Pasti ◽  
Don L. Crawford

Fourteen Streptomyces strains known to degrade lignocellulose were screened for their ability to decolorize three anthron-type dyes: Remazol Brilliant Blue R (RBBR), blue poly(vinylamine) sulfonate – anthraquinone dye (Poly B-411), and red poly(vinylamine) sulfonate – anthrapyridone dye (Poly R-478). The relationships between efficiency of dye decolorization and capacity to attack lignocellulose were examined. Good correlation was found between lignocellulose weight losses observed during previous solid-state fermentation assays and the ability to decolorize RBBR and Poly B-411. A poor correlation was observed between Poly R-478 decolorizing activity and lignocellulose-degrading ability. The presence of corn stover lignocellulose in the culture broth enhanced decolorization of the dye by all but one of the strains. The enhancement was thought to involve the increased production of extracellular peroxidases by cultures growing on lignocellulose. The results on oxidation of the three dyes by a commercial horseradish peroxidase indicate that RBBR and Poly B-411 are suitable substrates for analyzing production of peroxidases by Streptomyces spp., while no decolorization of Poly R-478 was observed under the conditions used. However, Poly R-478 decolorizing activity of the Streptomyces may reflect the activity of other enzymes involved in the complex process of lignocellulose degradation. Key words: Streptomyces, lignocellulose, degradation, dye, decolorization.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 677
Author(s):  
John Onolame Unuofin

Laccase is increasingly adopted in diverse industrial and environmental applications, due to its readily accessible requirements for efficient catalytic synthesis and biotransformation of chemicals. However, it is perceived that its industrial production might incur some unfavorable overhead, which leads to expensive market products, and the corresponding negative environmental feedback, due to the use of capital-intensive and precarious chemicals. To this end, this study was designed to evaluate the performance indicators of the valorization of wheat bran by a novel Jb1b laccase and its subsequent application in waste minimization and water management, on a laboratory scale. Optimal Jb1b laccase was produced in submerged fermentation medium containing wheat bran, an agroindustrial residue, through response surface methodology (RSM) algorithm, and was applied in dye decolorization and denim bioscouring, respectively. Results showed that the resultant enzyme manifested unique biochemical properties, such as enhanced tolerance at certain physicochemical conditions, with a residual activity of at least ca. 76%. Furthermore, phenomenally high concentrations of synthetic dyes (0.2% w v−1) were decolorized over 56 h, and a 6 h mediator-supported simultaneous denim bleaching and decolorization of wash effluent was observed. The sustainability of the production and application processes were inferred from the reusability of the fermentation sludge as a potential biofertilizer, with subsequent prospects for the biostimulation and bioaugmentation of contaminated soils, whereas the decolorized water could be adopted for other uses, amongst which horticulture and forestry are typical examples. These phenomena therefore authenticate the favorable environmental feedbacks and overhead realized in this present study.


2020 ◽  
Author(s):  
Nataša Ž. Šekuljica ◽  
Jelena R. Jovanović ◽  
Sonja M. Jakovetić Tanasković ◽  
Nevena D. Ognjanović ◽  
Ivana V. Gazikalović ◽  
...  

2020 ◽  
Author(s):  
Wissal BEN ALI ◽  
Delphine Chaduli ◽  
David Navarro ◽  
Christian Lechat ◽  
Annick Turbé-Doan ◽  
...  

Abstract Background : Environmental pollution is one of the major problems that the world is facing today. Several approaches have been taken, from physical and chemical methods to biotechnological strategies (e.g. the use of oxidoreductases). Oxidative enzymes from microorganisms offer eco-friendly, cost–effective processes amenable to biotechnological applications, such as in industrial dye decolorization. The aim of this study was to screen marine-derived fungal strains isolated from three coastal areas in Tunisia to identify laccase-like activities, and to produce and characterize active cell-free supernatants of interest for dye decolorization.Results : Following the screening of 20 fungal strains isolated from the harbors of Sfax and Monastir (Tunisia), five strains were identified that displayed laccase-like activities. Molecular-based taxonomic approaches identified these strains as belonging to the species Trichoderma asperellum , Stemphylium lucomagnoense and Aspergillus nidulans . Among these five isolates, one T. asperellum strain ( T. asperellum 1) gave the highest level of secreted oxidative activities, and so was chosen for further studies. Optimization of the growth medium for liquid cultures was first undertaken to improve the level of laccase-like activity in culture supernatants. Finally, the culture supernatant of T. asperellum 1 decolorized different synthetic dyes belonging to diverse dye families, in the presence or absence of 1-hydroxybenzotriazole (HBT) as a mediator.Conclusions : The optimal growth conditions to produce laccase-like active cell-free supernatants from T. asperellum 1 were 1.8 mM CuSO 4 as an inducer, 1% NaCl to mimic a seawater environment and 3% sucrose as a carbon source. The culture supernatant of T. asperellum 1 effectively decolorized different synthetic dyes belonging to diverse chemical classes, and the presence of HBT as a mediator improved the decolorization process.


2021 ◽  
Vol 40 (2_suppl) ◽  
pp. 5S-15S
Author(s):  
Monice M Fiume ◽  
Wilma F Bergfeld ◽  
Donald V Belsito ◽  
Ronald A Hill ◽  
Curtis D Klaassen ◽  
...  

The Expert Panel for Cosmetic Ingredient Safety (Panel) reopened the safety assessment of Acid Violet 43, a cosmetic ingredient that is an anthraquinone dye reported to function in cosmetics as a colorant. This colorant has the same chemical structure as Ext. D&C Violet No. 2, which is a certified colorant; however, Acid Violet 43 is not a certified color and it could have impurities that are not allowed in the certified color. The Panel reviewed relevant new data related to this ingredient and concluded that Acid Violet 43 is safe in the present practices of use and concentration for use in hair dye formulations. This conclusion supersedes the previous conclusion for Acid Violet 43 that included impurity specifications indicated for the certified color.


1975 ◽  
Vol 23 (3) ◽  
pp. 200-207 ◽  
Author(s):  
D M Boorsma ◽  
G L Kalsbeek

In this study we compared horseradish peroxidase (HRP)-labeled rabbit antihuman immunoglobulin G (IgG) conjugates, prepared by a one-step and a two-step method. Glutaraldehyde was used as a cross-linking agent. Two methods were used for removing unconjugated HRP: Sephadex G-200 gel chromatography and ammonium sulfate precipitation. The conjugates were characterized immunologically, immunochemically and enzymatically. The immunohistoenzymic properties of the conjugates were tested on unfixed cryostat sections of the skin of patients with chronic discoid lupus erythematosus. The influence of the presence of unconjugated HRP and unconjugated IgG was studied. Optimal results were obtained with conjugates prepared by a two-step method. Removing unconjugated HRPimproved the immunohistoenzymic properties of the conjugates. Conjugated and unconjugated IgG could be separated by Sephadex G-200 gel chromatography.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 456 ◽  
Author(s):  
Kamil Krawczyk ◽  
Stanisław Wacławek ◽  
Edyta Kudlek ◽  
Daniele Silvestri ◽  
Tomasz Kukulski ◽  
...  

Wastewater from the textile industry has a substantial impact on water quality. Synthetic dyes used in the textile production process are often discharged into water bodies as residues. Highly colored wastewater causes various of problems for the aquatic environment such as: reducing light penetration, inhibiting photosynthesis and being toxic to certain organisms. Since most dyes are resistant to biodegradation and are not completely removed by conventional methods (adsorption, coagulation-flocculation, activated sludge, membrane filtration) they persist in the environment. Advanced oxidation processes (AOPs) based on hydrogen peroxide (H2O2) have been proven to decolorize only some of the dyes from wastewater by photocatalysis. In this article, we compared two very different photocatalytic systems (UV/peroxydisulfate and UV/H2O2). Photocatalyzed activation of peroxydisulfate (PDS) generated sulfate radicals (SO4•−), which reacted with the selected anthraquinone dye of concern, Acid Blue 129 (AB129). Various conditions, such as pH and concentration of PDS were applied, in order to obtain an effective decolorization effect, which was significantly better than in the case of hydroxyl radicals. The kinetics of the reaction followed a pseudo-first order model. The main reaction pathway was also proposed based on quantum chemical analysis. Moreover, the toxicity of the solution after treatment was evaluated using Daphnia magna and Lemna minor, and was found to be significantly lower compared to the toxicity of the initial dye.


2019 ◽  
Vol 80 (12) ◽  
pp. 2404-2411
Author(s):  
D. Unlu

Abstract In this study, the pervaporative dehydration of the cutting oil ‘diethylene glycol’ (DEG) through a hydrophilic PVA membrane was investigated at various operation temperatures in the range of 333–363 K with a feed mixture containing 0.5–2.0 wt% water. The pervaporation (PV) performance of poly(vinyl alcohol) (PVA) is enhanced by the addition of natural clay kaolin into the pristine membrane. The thermal stability of the membranes was analyzed by thermal gravimetric analysis (TGA). The morphological analysis of the membranes was performed by scanning electron microscope (SEM). Separation success was determined by calculation of flux, selectivity, and PSI. These values were investigated as functions of the clay amount, feed concentration and feed temperature. The obtained results show that PV is an effective method for recycling waste cutting oil from wastewater.


Sign in / Sign up

Export Citation Format

Share Document