scholarly journals The possibility of obtaining beta-anhydrite from waste nitrogypsum

2004 ◽  
Vol 40 (1) ◽  
pp. 89-100 ◽  
Author(s):  
S. Marinkovic ◽  
A. Kostic-Pulek ◽  
S. Popov ◽  
J. Djinovic ◽  
Prvoslav Trifunovic

The possibility of obtaining ? - anhydrite from nitrogypsum, which is waste from a nitrocellulose plant, was investigated. It was shown by means of qualitative IR analysis that the product obtained by heating nitrogypsum for 5 hours at 700 o C was ? - anhydrite. When the ?- anhydrite was mixed with water at a W/S (water/solid) ratio of 0.54 in presence of different accelerators (CaO, mixture CaO - ash, ash, Na2SO4 and K2SO4), pastes were formed which hardened on standing. The compressive strength of the hardened samples was measured after 7 and 28 days and their composition determined by qualitative IR analysis. On the basis of these results, it was observed that a relationship exists between the composition (depending on the used accelerator) and the compression strength of the samples. Namely, the formation of large cores of double salts: syngenite (K2SO4 ?CaSO4 ?H2O) and glauberite (Na2SO4 ?CaSO4), in the presence of the accelerators K2SO4 and Na2SO4, respectively, was due to the rapid and complete crystallization of the dihydrate (CaSO4 ?2H2O). This fast crystal growth of the dihydrate resulted in high compressive strengths of these samples. In the other samples (prepared in presence of the accelerators: CaO, mixture CaO - ash and ash), dihydrate did not form and, consequently, their compressive strength was low.

Alloy Digest ◽  
1960 ◽  
Vol 9 (7) ◽  

Abstract HAYNES STELLITE 98M2 Alloy is a cobalt-base alloy having higher compressive strength and higher hardness than all the other cobalt-base alloys at room temperature and in the red heat range. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: Co-22. Producer or source: Haynes Stellite Company.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 540
Author(s):  
Mohamed Ali Hassan ◽  
Hossam M. Yehia ◽  
Ahmed S. A. Mohamed ◽  
Ahmed Essa El-Nikhaily ◽  
Omayma A. Elkady

To improve the AlCoCrFeNi high entropy alloys’ (HEAs’) toughness, it was coated with different amounts of Cu then fabricated by the powder metallurgy technique. Mechanical alloying of equiatomic AlCoCrFeNi HEAs for 25 h preceded the coating process. The established powder samples were sintered at different temperatures in a vacuum furnace. The HEAs samples sintered at 950˚C exhibit the highest relative density. The AlCoCrFeNi HEAs model sample was not successfully produced by the applied method due to the low melting point of aluminum. The Al element’s problem disappeared due to encapsulating it with a copper layer during the coating process. Because the atomic radius of the copper metal (0.1278 nm) is less than the atomic radius of the aluminum metal (0.1431 nm) and nearly equal to the rest of the other elements (Co, Cr, Fe, and Ni), the crystal size powder and fabricated samples decreased by increasing the content of the Cu wt%. On the other hand, the lattice strain increased. The microstructure revealed that the complete diffusion between the different elements to form high entropy alloy material was not achieved. A dramatic decrease in the produced samples’ hardness was observed where it decreased from 403 HV at 5 wt% Cu to 191 HV at 20 wt% Cu. On the contrary, the compressive strength increased from 400.034 MPa at 5 wt% Cu to 599.527 MPa at 15 wt% Cu with a 49.86% increment. This increment in the compressive strength may be due to precipitating the copper metal on the particles’ surface in the nano-size, reducing the dislocations’ motion, increasing the stiffness of produced materials. The formability and toughness of the fabricated materials improved by increasing the copper’s content. The thermal expansion has increased gradually by increasing the Cu wt%.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 360
Author(s):  
Pauls P. Argalis ◽  
Laura Vitola ◽  
Diana Bajare ◽  
Kristine Vegere

A major problem in the field of adsorbents is that binders (kaolin clay, bentonite) introduced to bind zeolites and ensure the needed mechanical strength, are not able to sorb gases like CO2 and N2, and decrease the overall adsorption capacity. To solve this problem, one of the pathways is to introduce a binder able to sorb such gases. Thus, in this study, the physical and mechanical properties of a novel binder based on metakaolin and its composite with zeolite 4A in the granular form were studied. Metakaolin was used as a precursor for alkali-activated binder, which was synthesized using an 8M NaOH activation solution. Raw materials were characterized using granulometry, X-ray diffraction (XRD), and differential thermal analysis (DTA); and final products were characterized using density measurements, a compressive strength test, XRD, Brunauer–Emmett–Teller (BET) analysis, and scanning electron microscopy (SEM). Alkali-activated metakaolin was found to be efficient as a binding material when data for morphological properties were analyzed. A relationship was observed—by increasing the liquid-to-solid ratio (L/S), compressive strength decreased. Zeolite granule attrition was higher than expected: 2.42% and 4.55% for ZG-0.8, 3.64% and 5.76% for ZG-1.0, and 2.73% and 4.85% for ZG-1.2, measured at 4 and 5 atmospheres, respectively.


2021 ◽  
Vol 11 (3) ◽  
pp. 1037
Author(s):  
Se-Jin Choi ◽  
Ji-Hwan Kim ◽  
Sung-Ho Bae ◽  
Tae-Gue Oh

In recent years, efforts to reduce greenhouse gas emissions have continued worldwide. In the construction industry, a large amount of CO2 is generated during the production of Portland cement, and various studies are being conducted to reduce the amount of cement and enable the use of cement substitutes. Ferronickel slag is a by-product generated by melting materials such as nickel ore and bituminous coal, which are used as raw materials to produce ferronickel at high temperatures. In this study, we investigated the fluidity, microhydration heat, compressive strength, drying shrinkage, and carbonation characteristics of a ternary cement mortar including ferronickel-slag powder and fly ash. According to the test results, the microhydration heat of the FA20FN00 sample was slightly higher than that of the FA00FN20 sample. The 28-day compressive strength of the FA20FN00 mix was approximately 39.6 MPa, which was higher than that of the other samples, whereas the compressive strength of the FA05FN15 mix including 15% of ferronickel-slag powder was approximately 11.6% lower than that of the FA20FN00 mix. The drying shrinkage of the FA20FN00 sample without ferronickel-slag powder was the highest after 56 days, whereas the FA00FN20 sample without fly ash showed the lowest shrinkage compared to the other mixes.


2018 ◽  
Vol 53 (4) ◽  
pp. 535-546 ◽  
Author(s):  
M Altaf ◽  
S Singh ◽  
VV Bhanu Prasad ◽  
Manish Patel

The compressive strength of C/SiC composite at different strain rates, off-axis orientations and after high-velocity impact was studied. The compressive strength was found to be 137 ± 23, 130 ± 46 and 162 ± 33 MPa at a strain rate of 3.3 × 10−5, 3.3 × 10−3, 3.3 × 10−3 s−1, respectively. On the other hand, the compressive strength was found to be 130 ± 46, 99 ± 23 and 87 ± 9 MPa for 0°/90°, 30°/60° and 45°/45° fibre orientations to loading direction, respectively. After high-velocity impact, the residual compressive strength of C/SiC composite was found to be 58 ± 26, 44 ± 18 and 36 ± 3.5 MPa after impact with 100, 150 and 190 m/s, respectively. The formation of kink bands in fibre bundles was found to be dominant micro-mechanism for compressive failure of C/SiC composite for 0°/90° orientation. On the other hand, delamination and the fibre bundles rotation were found to be the dominant mechanism for off-axis failure of composite.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 900
Author(s):  
Chamila Gunasekara ◽  
Peter Atzarakis ◽  
Weena Lokuge ◽  
David W. Law ◽  
Sujeeva Setunge

Despite extensive in-depth research into high calcium fly ash geopolymer concretes and a number of proposed methods to calculate the mix proportions, no universally applicable method to determine the mix proportions has been developed. This paper uses an artificial neural network (ANN) machine learning toolbox in a MATLAB programming environment together with a Bayesian regularization algorithm, the Levenberg-Marquardt algorithm and a scaled conjugate gradient algorithm to attain a specified target compressive strength at 28 days. The relationship between the four key parameters, namely water/solid ratio, alkaline activator/binder ratio, Na2SiO3/NaOH ratio and NaOH molarity, and the compressive strength of geopolymer concrete is determined. The geopolymer concrete mix proportions based on the ANN algorithm model and contour plots developed were experimentally validated. Thus, the proposed method can be used to determine mix designs for high calcium fly ash geopolymer concrete in the range 25–45 MPa at 28 days. In addition, the design equations developed using the statistical regression model provide an insight to predict tensile strength and elastic modulus for a given compressive strength.


2013 ◽  
Vol 405-408 ◽  
pp. 2933-2937
Author(s):  
Ji Chuan Geng ◽  
Kun Ni ◽  
Shan Qi Fang ◽  
Yun Xing Shi ◽  
Yi Ning Ding ◽  
...  

A series of experiments have been undertaken to investigate the effects, on compressive strength, of variable sand/cement ratios and cement grade. Ten mixtures of different s/c ratios used two kinds of cement were cast and the compressive strength at different curing ages was tested. The results indicate that the compressive strength gets lower as the s/c ratio increases for both 42.5R and 32.5R cement. For the mixtures used 32.5R cement, the 28-day compressive strength is pretty low for the s/c ratios of 1.5 and 2. The specimens used 42.5R cement have higher compressive strength than those with 32.5R cement. The compressive strength decreases from 42.5R to 32.5R cement are significantly smaller for the s/c ratios of 0.5 and 1 than the other three s/c ratios.


2020 ◽  
Vol 1 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Abdulkadir Cüneyt AYDIN

The sulphate resistance of variable concretes, including Boron active belite cement (BABC), CEM I 42.5 R and CEM II 32.5 B-S cements, were determined in the present study. The compressive strength, ultrasonic velocity, Schmidt, and unit weight tests were applied to steam cured and water cured samples. Three Na2SO4 solutions of %5, %10 and %20 were prepared for each type of concrete except for the control group and the samples were exposed to the effect of sulphate solutions for 24 weeks. As a result, weight increase was determined in CEM I 42.5 R cement samples the least, and in BAB cement samples the most. As expected, pronounced chemical effect was not observed in samples of cement CEM II.32.5 B-S. On the other hand, while decreases or slight increases were observed in the ultrasound measurements of CEM I 42.5 R cement samples after sulphate test, critical increases were observed in BAB and CEM II 32.5 B-S cement samples. Under sulphate effect, water and steam cures had explicit effects on pressure resistances.


2012 ◽  
Vol 204-208 ◽  
pp. 4101-4104 ◽  
Author(s):  
Tzong Ruey Yang ◽  
Ta Peng Chang ◽  
Chun Tao Chen ◽  
Yuan Kai Lee ◽  
Bo Tsun Chen

In this paper, the metakaolin is used as the raw material with aluminosilicate compounds to produce the geopolymer. The effects of three levels of two major controlling factors, the degree of polymerization of the activating solution (weight ratio of SiO2 to Na2O) of 0.4, 0.7 and 1.0 and the weight ratio of liquid to solid (L/S) of 0.7, 0.85 and 1.00 on the engineering properties of geopolymer are investigated. The experimental results show that, at age of 28 days, the compressive strength increases from the lowest 37.33 MPa (SiO2/Na2O = 0.4 and L/S = 0.7) to the highest 71.21 MPa (SiO2/Na2O = 0.7 and L/S = 0.7). While, the thermal conductivity increases from the lowest 0.39 w/mk (SiO2/Na2O = 0.4 and L/S = 1.0) to the highest 0.761 w/mk (SiO2/Na2O = 1.0 and L/S = 0.7).


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Ateş

Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4%) and cement (10%, 20%, 30%, and 40%) were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of  mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.


Sign in / Sign up

Export Citation Format

Share Document