scholarly journals Generalized Ellingham diagrams for utilization in solid oxide fuel cells

2008 ◽  
Vol 44 (1) ◽  
pp. 39-48 ◽  
Author(s):  
H. Kishimoto ◽  
K. Yamaji ◽  
M.E. Brito ◽  
T. Horita ◽  
H. Yokokawa

Generalized Ellingham diagram for the P-O-H and the Ni-P-OH systems have been constructed to investigate thermodynamically the chemical stability of nickel anode against the gaseous impurities containing phosphorous compounds. In the same way as the original Ellingham diagram, the oxygen potential is used as the vertical axis, while the temperature is adopted as horizontal axis. For the P-O-H system which contains many gaseous species, the dominant areas of gaseous species are displayed with a parameter of their partial pressure in an analogous way to the aqueous species in the Pourbaix diagram. The multicomponent Ellingham diagram for the Ni-P-O-H system was constructed in a similar manner to the multicomponent Pourbaix diagram. The obtained diagrams have been discussed to examine the reactivity of nickel anodes with phosphorus compounds in SOFCs in terms of operational variables such as temperature, oxygen potential, overpotential under the anode polarization and so on.

ScienceRise ◽  
2020 ◽  
pp. 66-72
Author(s):  
Sergii Shamanskyi ◽  
Sergii Boichenko ◽  
Lesia Pavliukh

The object of research: the process of wastewater treatment using bioconversion for subsequent motor fuel production. Investigated problem: improving the efficiency of bioconversion process for biofuel production with simultaneous wastewater treatment by removing nitrogen and phosphorous compounds. The main scientific results: providing the possibility of biofuel production with energy and economic inefficiency. It is done by combining the process of motor biofuel production with the process of treating wastewater from biogenic elements makes it perspective for commercial use. Traditional technology for the production of motor biofuels from microalgae includes cultivation, harvesting, dehydration and drying of biomass, extraction of oils from them and subsequent production of methyl esters and glycerol. Such technology is often not economically effective. It requires significant amount of energy for carrying out all necessary processes. In addition, it requires significant expenditures of water and nutrients. The use of nutrient-rich wastewater as a culture medium for the cultivation of microalgae allows not only to reduce costs, but also to purify wastewater from nitrogen and phosphorus compounds, which makes this process economically effective. The area of practical use of the research results: Sewage and gray water treatment plants. Industrial and agricultural effluents treatment plants. Different types of enterprises, which have wastewater enriched with nitrogen and phosphorous compounds. Innovative technological product: The technology of microalgae cultivation using wastewater as a culture medium. The technology allows effectively purifying used wastewaters from nitrogen and phosphorous compounds with no waste at the end. Scope of the innovative technological product: Improved technology of motor biofuel production with simultaneous wastewater purification, which is economically effective and environmentally safe.


2018 ◽  
Vol MA2018-01 (32) ◽  
pp. 1930-1930
Author(s):  
Tatsuya Kawada

The materials and the structure of solid oxide fuel cells are designed to avoid thermo-mechanical damages under various operation conditions. However, inherent risk of chemo-mechanical failures are still not fully understood. This paper aims to review the recent works related to this topic, and to address some issues which have not been widely recognized. The coupling of chemistry and mechanics are classified into four types, i.e. (1) chemically driven strain, (2) chemically modified mechanical properties, (3) mechanically driven chemical reactions, and (4) mechanically modified chemical (physical) properties. Since chemical energies are much larger than mechanical energy accommodated in SOFC, the former two types (type(1) and (2)) of chemo-mechanical coupling have been recognized as more important than the others, and have been studied intensively. An example of type-1 phenomena is chemical expansion of mixed conducting oxides with e.g. (La,Sr)(Co,Fe)O3 cathode, LaCrO3 based interconnect, and CeO2 based or (La,Sr)(Ga,Mg,Co)O3 electrolytes. Since the transient behavior as well as steady state distribution of oxygen potential inside the constituent solids is essential to know the effect of the chemical strain, Terada et al. developed a computer code “SIMUDEL” of an FEM-based calculation of oxygen potential. This code considers “chemical capacitance” due to nonstoichiometry of the materials to treat the transient responses, and the results of the calculation can be transported into some of major commercial programs for structure analysis. Volume change of a nickel cermet anode is also an important feature of type-1 coupling which must be considered in determining fabrication and operation processes. The electrode shrinks on reduction and expands on re-oxidation as expected from the lattice size of the metal and the oxide. However, under certain conditions, a porous cermet was found to “shrink” upon oxidation. It took place only during light re-oxidation around 400C. Under this condition the formation of NiO was not obvious from XRD, whereas weight gain was observed by thermo-gravimetry. Careful observation of the microstructure of a porous Ni revealed that, upon shrinkage, the particle-to-particle separation changed partly due to the neck growth between the particles and to the change of the connection angle of the particles. Further study is underway to elucidate the detailed mechanism of the oxidation-induced shrinkage. The change of mechanical properties such as elastic moduli and fracture strength are also dependent on defect concentration and its motion in the lattice (type-2 coupling). Young’s modulus of nonstoichiometric oxides show dependences not only on temperature but also on pO2 through the change of defect concentration. Also, domain boundary shift of ferroelastic phase of LSCF was found to be correlated with the defect concentration. As is discussed for the anomaly of Young’s modulus of YSZ around 400˚C, the motion of oxide ion vacancies may also have correlation with the ferroelastic strain observed with Sc and Ce doped ZrO2 electrolyte above 300˚C. Another interesting type-2 coupling is with the lightly oxidized Ni cermet electrode. It was found that the creep rate of Ni-YSZ cermet at 400˚C was dramatically increased when oxygen-containing gas was introduced. This may be by a correlated mechanism with the above mentioned oxidation induced shrinkage. Several reports, including those from our group, have been published on the effect of mechanical stress on defect formation (type-3 coupling) of nonstoichiometric oxides determined by experiments or by calculation. As is expected from thermodynamic consideration, the experimentally determined effect was not large, e.g. 1G Pa stress was equivalent to 1/5 order of magnitude shift of chemical potential of oxygen for nonstoichiometry of LSCF. Similarly, only minor effect on a practical system was reported for type-4 coupling. However, those phenomena can have significant effect on long-term stability if cation mobility and their driving force are modified at a strained interfaces or grain boundaries.


1952 ◽  
Vol 30 (6) ◽  
pp. 484-493 ◽  
Author(s):  
K. P. Strickland

Methods have been investigated for purifying the phosphorus compounds of brain for the determination of specific activities after the administration of radioactive phosphate. The specific activities of the nucleic acids obtained by the method of Hammarsten (8) were much lower than those obtained by the Schmidt and Thannhauser procedure (18). There was a considerable incorporation of radioactive phosphate into the phosphorous compounds of cat brain following an intracisternal injection of P32. The determination of the relative specific activities for a number of phosphorus fractions showed that the incorporation was most rapid into the acid-soluble phosphorus followed, in descending order, by “phosphoprotein”, “diphosphoinositide”, pentosenucleic acid, acid-insoluble residue, phospholipid, and desoxypentosenucleic acid.


Author(s):  
Tomoyuki Sone ◽  
Toshiki Sasaki ◽  
Hiromi Yamaguchi

Waste tributyl phosphate (TBP) and normal dodecane generated from R&D activities on recycle of nuclear fuel has been stored in Japan Atomic Energy Agency (JAEA). If it is incinerated, a large quantity of contaminated phosphorous compounds will be generated as radioactive secondary wastes. The objective of this study is to reduce the generation of the radioactive secondary wastes by the treatment of the waste TBP/dodecane using steam reforming system. We constructed the demonstration scale steam reforming system which consists of a gasification chamber for vaporization of wastes, a metal mesh filter for removal of radioactive nuclides from gasified wastes, a combustion chamber, and scrubbers for removal of phosphorous oxides. We conducted process demonstration tests using waste TBP/dodecane with 0.07 g/L of uranium. We studied the temperature dependence of the gasification ratio of inorganic phosphorus compounds formed by pyrolysis of TBP in the gasification chamber and removal of uranium by the filter. As the results, more than 90% of phosphorus compounds were gasified from the gasification chamber at temperature of 600°C or more, and the uranium concentration in the waste water generated from the off-gas treatment system is under the detection limits. The waste water containing the separated phosphorus compounds can be discharged into the river or the sea as the liquid wastes in which uranium concentration is under the regulatory level. These results show the steam reforming system is effective in the reduction of radioactive secondary waste in the treatment of TBP/dodecane.


Author(s):  

The article presents a model description of spatially inhomogeneous features for the ecosystem of the Novosibirsk reservoir, the largest in Western Siberia, based on the reproduction of biogeochemical cycles of limiting elements. We have formulated the model tool set for studying quantitative and qualitative changes in the state variables of water bio/geo/cenosis. To obtain an adequate picture of environmental processes occurring in various parts of the reservoir modeling of the transformation features of nitrogen and phosphorus compounds in the waters of the Novosibirsk reservoir was performed in the box approximation. Phytoplankton biomass in a relatively shallow water area significantly exceeds concentrations in the deep-water and near-dam parts of the reservoir. A detailed dynamic picture of the variability of the content of pollutants, as well as oxygen, normalized by maximum permissible values, in the water areas of the reservoir is reproduced.The estimates obtained during the simulation generally correspond to the observed data. This study can serve as a basis for developing a model approach to monitoring and management of ecosystem processes in the Novosibirsk reservoir.


2010 ◽  
Vol 24 (3) ◽  
pp. 161-172 ◽  
Author(s):  
Edmund Wascher ◽  
C. Beste

Spatial selection of relevant information has been proposed to reflect an emergent feature of stimulus processing within an integrated network of perceptual areas. Stimulus-based and intention-based sources of information might converge in a common stage when spatial maps are generated. This approach appears to be inconsistent with the assumption of distinct mechanisms for stimulus-driven and top-down controlled attention. In two experiments, the common ground of stimulus-driven and intention-based attention was tested by means of event-related potentials (ERPs) in the human EEG. In both experiments, the processing of a single transient was compared to the selection of a physically comparable stimulus among distractors. While single transients evoked a spatially sensitive N1, the extraction of relevant information out of a more complex display was reflected in an N2pc. The high similarity of the spatial portion of these two components (Experiment 1), and the replication of this finding for the vertical axis (Experiment 2) indicate that these two ERP components might both reflect the spatial representation of relevant information as derived from the organization of perceptual maps, just at different points in time.


2013 ◽  
Vol 51 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Sun-Min Park ◽  
Hae-Ran Cho ◽  
Byung-Hyun Choi ◽  
Yong-Tae An ◽  
Ja-Bin Koo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document