scholarly journals Different behavior of 3-nitrotyrosine and tyrosine toward perfluorinated reagents suitable for one-step preparation of volatile derivatives

2012 ◽  
Vol 77 (5) ◽  
pp. 667-683
Author(s):  
Radmila Pavlovic ◽  
Antonio Biondi ◽  
Maria Chiesa ◽  
Natasa Trutic ◽  
Mirjana Abramovic ◽  
...  

In view to develop a gas-chromatographic (GC) determination of the 3-nitrotyrosine (NY)/tyrosine (Y) ratio as a marker of nitro-oxidative stress, different reagents were tested with the objective of obtaining a single volatile fluorinated product for each amino acid by a one-step derivatization procedure. The heptafluorobutyric anhydride (HFBA) /heptafluorobutanol (HFBOH) mixture proved unsuccessful for NY and Y simultaneous analysis. The reaction with different chloroformates [isobutyl chlorofomate (iBuCF) and ethyl chloroformate (EtCF)] in the presence of different perfluorinated alcohols such as trifluoroethanol (TFEOH) and HFBOH was investigated. Combination EtCF/fluorinated alcohols yielded derivatives of NY and Y as single peaks suitable to the GC determination of the NY/Y ratio. The different behaviour of two amino acids in the used reaction mixtures and the parameters influencing the results were discussed.

2006 ◽  
Vol 59 (6) ◽  
pp. 407 ◽  
Author(s):  
Luigi Aurelio ◽  
Robert T. C. Brownlee ◽  
Jason Dang ◽  
Andrew B. Hughes ◽  
Gideon M. Polya

We report the full structural determination of the depsipeptide petriellin A. The absolute configuration of the amino acid residues, N-methyl isoleucine and N-methyl threonine, have been determined by a combination of HPLC and TLC comparison of synthetic Marfey’s derivatives and Marfey’s derivatives of the natural product hydrolysate. The configuration of the chiral centres in these two N-methylated residues was found to be the same as those of the common unmethylated l-amino acids.


1978 ◽  
Vol 56 (6) ◽  
pp. 517-520 ◽  
Author(s):  
H. Kaplan ◽  
D. C. H. Cheng ◽  
G. Oda ◽  
M. Kates

A new double-labelling procedure for amino acid analysis which requires only routine chromatographic equipment is described. When 1-fluoro-2,4-dinitro[3H]benzene is reacted with a mixture of 14C-labelled amino acids followed by reaction with the same 14C-labelled amino acid mixture diluted with an unlabelled sample of amino acids, the 3H: 14C ratio in the resulting 2,4-dinitrophenyl (DNP) amino acid derivatives of the diluted sample will be increased in proportion to the quantity of unlabelled amino acid in the diluted sample. This procedure gave reliable results when applied to the known proteins insulin and lysozyme. The procedure is most advantageous when applied to amino acids which are unstable during acid hydrolysis or present in low molar fractions.When applied to the analysis of the bacteriorhodopsin in Halobacterium cutirubrum, this procedure showed the presence of one histidine residue and four tryptophan residues per mole protein but no cystine or cysteine; in general, the analyses obtained were consistent with those originally reported by Oesterhelt, D. and Stoeckenius, W. (1971) (Nature (London) New Biol. 233, 149–152) for bacteriorhodopsin of H. halobium.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Irina A. Mednova ◽  
Alexander A. Chernonosov ◽  
Marat F. Kasakin ◽  
Elena G. Kornetova ◽  
Arkadiy V. Semke ◽  
...  

Amino acids and acylcarnitines play an important role as substrates and intermediate products in most of pathways involved in schizophrenia development such as mitochondrial dysfunction, inflammation, lipid oxidation, DNA damage, oxidative stress, and apoptosis. It seems relevant to use an integrated approach with ‘omics’ technology to study their contribution. The aim of our study was to investigate serum amino acid and acylcarnitine levels in antipsychotics-treated patients with chronic schizophrenia compared with healthy donors. We measured serum levels of 15 amino acids and 30 acylcarnitines in 37 patients with schizophrenia and 36 healthy donors by means of tandem mass spectrometry. In summary, patients with chronic schizophrenia had an altered concentration of a few amino acids and acylcarnitines in comparison to the healthy probands. Further research is needed to assess and understand the identified changes.


Amino Acids ◽  
2021 ◽  
Author(s):  
Grażyna Gałęzowska ◽  
Joanna Ratajczyk ◽  
Lidia Wolska

AbstractThe quantitation and qualification of amino acids are most commonly used in clinical and epidemiological studies, and provide an excellent way of monitoring compounds in human fluids which have not been monitored previously, to prevent some diseases. Because of this, it is not surprising that scientific interest in evaluating these compounds has resurfaced in recent years and has precipitated the development of a multitude of new analytical techniques. This review considers recent developments in HPLC analytics on the basis of publications from the last few years. It helps to update and systematize knowledge in this area. Particular attention is paid to the progress of analytical methods, pointing out the advantages and drawbacks of the various techniques used for the preparation, separation and determination of amino acids. Depending on the type of sample, the preparation conditions for HPLC analysis change. For this reason, the review has focused on three types of samples, namely urine, blood and cerebrospinal fluid. Despite time-consuming sample preparation before HPLC analysis, an additional derivatization technique should be used, depending on the detection technique used. There are proposals for columns that are specially modified for amino acid separation without derivatization, but the limit of detection of the substance is less beneficial. In view of the fact that amino acid analyses have been performed for years and new solutions may generate increased costs, it may turn out that older proposals are much more advantageous.


1973 ◽  
Vol 248 (7) ◽  
pp. 2387-2391 ◽  
Author(s):  
Gladys E. Deibler ◽  
Russell E. Martenson

2015 ◽  
Vol 7 (18) ◽  
pp. 7574-7581 ◽  
Author(s):  
Magdalena M. Dziągwa-Becker ◽  
Jose M. Marin Ramos ◽  
Jakub K. Topolski ◽  
Wiesław A. Oleszek

Free amino acid determination in plants by LC-MS/MS.


2002 ◽  
Vol 56 (10) ◽  
pp. 1259-1267 ◽  
Author(s):  
Cyril Petibois ◽  
Georges Cazorla ◽  
André Cassaigne ◽  
Gérard Déléris

Global metabolic adaptations to physical conditioning were described in 15 subjects by FT-IR spectrometry as the method allowed determination of glucose (Glc), lactate (La), glycerol, triglycerides (TG), fatty acyl moieties (FAM), and total amino acids plasma concentrations. Subtraction of plasma FT-IR spectra obtained at resting state from the exercise spectra also allowed determination of the biomolecular response to exercise. On week 1, exercise induced a transient hypoglycemia, a lactatemia increase of 153%, a FAM depletion of 27%, and a TG concentration decrease of 28%. Protein contents increased by 2%, but these were partly catabolized for amino acid supply (+27%), suggesting an important metabolic stress during exercise. On week 3, exercise hypoglycemia had disappeared, lactate increase was diminished by 91%, TG contents were decreased by 14%, and proteins and amino acids exhibited higher absorption increases. On week 5, TG and FAM concentrations were markedly increased during exercise, protein absorption was still increased (+9%), but amino acid blood release was diminished by 81%. These results described positive adaptations to training. Furthermore, FAM concentration could be determined from plasma FT-IR spectra by using the 2996–2819 cm−1 spectral area [ νas(CH3), νas(CH2), νs(CH3), and νs(CH2) absorbance; 0.82 mMol·L−1, a.u. cm−1], as well as for amino acid concentration by using the ν(COO−) spectral area (1430–1360 cm−1; 0.062 g·L−1, a.u. × cm−1). FT-IR spectrometry was useful to determine simultaneously various plasma concentrations and most of the biomolecular changes through successive samples.


Sign in / Sign up

Export Citation Format

Share Document