rotational rheometer
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Moučka ◽  
M. Sedlačík ◽  
J. Osička ◽  
V. Pata

AbstractDue to its simple curing and very good mechanical properties, Sylgard 184 belongs to the most widely and frequently used silicones in many industrial applications such as microfluidics and microengineering. On top of that its mechanical properties are further controllable through the curing temperature, which may vary from ambient temperature up to 200 °C; the lower the curing temperature the lower the mechanical properties (Johnston et al. in J Micromech Microeng 24:7, 2014. 10.1088/0960-1317/24/3/035017). However, certain specialised application may require even a softer binder than the low curing temperature allows for. In this study we show that this softening can be achieved with the addition of silicone oil into the Sylgard 184 system. To this end a series of Sylgard 184 samples with varying silicone oil concentrations were prepared and tested (tensile test, rotational rheometer) in order to determine how curing temperature and silicone oil content affect mechanical properties. Curing reaction of the polymer system was found to observe 2nd order kinetics in all cases, regardless the oil concentration used. The results suggest that within the tested concentration range the silicone oil addition can be used to soften commercial silicone Sylgard 184.


2021 ◽  
Vol 11 (14) ◽  
pp. 6583
Author(s):  
Kacper Kaczmarczyk ◽  
Joanna Kruk ◽  
Paweł Ptaszek ◽  
Anna Ptaszek

The aim of the research was to develop a pressure drop measuring method dedicated to fluids under real flow through a pipeline. The measurement system is a set of appropriately configured flow meter and pressure sensors installed on the pipeline. The pressure drop values detected on the measuring section are sufficient to clearly determine the rheological properties of the fluid. The measuring system used for the tests consisted of a screw pump, two pressure sensors and an electromagnetic flow meter. The length of the measuring section was 4.12 m, and the internal diameter of the pipeline was 0.026 m. To calibrate of the measuring system a glycerol was used. As a model fluid, a 1% water solution of xanthan gum was used and was subjected to the flow at following shear rate conditions: 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65 s−1. The obtained raw experimental data included the pressure drop values and flow rate and they created full information about the fluid behavior during flow. According to the momentum balance equation, the rheological parameters of Ostwald de Waele model were estimated. The estimation procedure was carried out with the help of the Marquardt-Levenberg minimisation method. The same solutions simultaneously were tested with the help of a rotational rheometer. The data obtained from the pressure drop method were consistent with the results obtained from the rotational rheometer. The use of the pressure drop allows to determine the rheological properties of the non-newtonian fluids under the process conditions directly in the pipeline. In addition, it is possible to perform full rheological characteristics based on one flow rate under laminar conditions.


2021 ◽  
Vol 58 (4) ◽  
pp. 271-277
Author(s):  
Zihan Wang ◽  
Liangliang Lin ◽  
Hujun Xu

Abstract In the present work, oil-in-water (O/W) emulsion systems were prepared by using the PEG-7 lauric acid glycerides as the emulsifiers and the liquid paraffin as the oil phase. The influence of processing parameters such as emulsification temperature, stirring speed, emulsifier concentration, oil-water volume ratio and polymer addition on the stability of the emulsion systems was investigated. In order to determine the optimal conditions for the preparation of the emulsion systems based on PEG-7 lauric acid glycerides, a laser drop size analyser and a rotational rheometer were used. As the stability of the O/W emulsion systems increased, the average droplet size of the O/W emulsions measured by the laser droplet size analyser became smaller and the viscosity, storage modulus and loss modulus of the O/W emulsions measured by the rotational rheometer became larger. The following optimal conditions were determined in this study: emulsification temperature 80°C, stirring speed 500 r/min, emulsifier concentration 5 wt%, oil-water volume ratio 1:1 and added amount of xanthan gum 0.2 wt%. The droplet morphology of the O/W emulsion prepared under the optimal conditions, which was characterised by a super high magnification microscope, is small. Furthermore, the long-term stability of the emulsion system prepared under the optimal conditions was investigated over a period of time (4 weeks). The O/W emulsion proves to be well stable even after 4 weeks, with a water separation rate of 0%.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 935
Author(s):  
Francisco J. Hernández-Rangel ◽  
María Z. Saavedra-Leos ◽  
Josefa Morales-Morales ◽  
Horacio Bautista-Santos ◽  
Vladimir A. Reyes-Herrera ◽  
...  

The rheological characterization of fluids using a rheometer is an essential task in food processing, materials, healthcare or even industrial engineering; in some cases, the high cost of a rheometer and the issues related to the possibility of developing both electrorheological and magnetorheological tests in the same instrument have to be overcome. With that in mind, this study designed and constructed a low-cost rotational rheometer with the capacity to adapt to electro- and magneto-rheological tests. The design team used the method of continuous improvement through Quality Function Deployment (QFD) and risk analysis tools such as Failure Mode and Effect Analysis (FMEA) and Finite Element Analysis (FEA). These analyses were prepared in order to meet the customer’s needs and engineering requirements. In addition to the above, a manufacturing control based on process sheets was used, leading to the construction of a functional rheometer with a cost of USD $1500.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1979
Author(s):  
Maria Chiara Cristiano ◽  
Francesca Froiio ◽  
Antonia Mancuso ◽  
Federica De Gaetano ◽  
Cinzia Anna Ventura ◽  
...  

Poloxamer 407 copolymer is a versatile and widely used thermo-reversible material. Its use has many advantages, such as bio-adhesion, enhanced solubilization of poorly water-soluble drugs and many applications fields like oral, rectal, topical, nasal drug administration. Hydrogels made up of Poloxamer 407 are characterized by specific rheological features, which are affected by temperature, concentration and presence of other compounds. A strategic approach in topical therapeutic treatments may be the inclusion of drug delivery systems, such as ethosomes, transfersomes and niosomes, into hydrogel poloxamer formulation. The evaluation of the interaction between colloidal carriers and the Poloxamer 407 hydrogel network is essential for a suitable design of an innovative topical dosage form. For this reason, the Rheolaser Master™, based on diffusing wave spectroscopy, and a Kinexus Rotational Rheometer were used to evaluate the influence of nanocarriers on the microrheological features of hydrogels. The advantages of the Rheolaser Master™ analyzer are: (i) its ability to determine viscoelastic parameter, without altering or destroying the sample and at rest (zero shear); (ii) possibility of aging analysis on the same sample. This study provide evidence that vesicular systems do not influence the rheological features of the gel, supporting the possibility to encapsulate an innovative system into a three-dimensional network.


Sign in / Sign up

Export Citation Format

Share Document