scholarly journals Novel approaches to implementation of pumpkin resistance in control of viral diseases

2010 ◽  
Vol 25 (3) ◽  
pp. 201-211
Author(s):  
Aleksandra Bulajic ◽  
Ana Vucurovic ◽  
Ivana Stankovic ◽  
Danijela Ristic ◽  
Janos Berenji ◽  
...  

As there is a growing frequency of viral plant diseases in epidemic proportions, the possibilities for successful control are constantly being explored. Despite the fact that integral and simultaneous employment of numerous control measures may contribute to the decreasing amount of yield losses, especially concerning non-persistently aphid-transmitted viruses, these measures are often not efficient enough. Research into the basis of resistance to viral infection and principles of its inheritance, introduction of sources of resistance in susceptible genotypes, by conventional or genetic manipulations, are very intensive for cucurbit crops, especially pumpkins. Pumpkin crops are being endangered by a great number of different viruses, among which the Zucchini yellow mosaic virus, (ZYMV), Watermelon mosaic virus (WMV) and Cucumber mosaic virus (CMV) are present every year in Serbia, frequently causing epidemics. The majority of pumpkin cultivars are not resistant or tolerant to viral infections, but sources of resistance have been identified in various related species. So far, the identified sources of resistance to the ZYMV are found in Cucurbita moschata and Citrullus lanatus var. lanatus genotypes and consist of one or several major dominant genes of resistance. It is a similar case with WMV, although the sources of dominant major genes are identified in C. lanatus and C. colocynthis. The sources of resistance to CMV in the form of one dominant gene have been identified in the genotype C. moschata, although the introduction of this gene by conventional means proved to be very difficult. Besides the aforementioned, substantial efforts are being made in developing genotypes with multiple resistance against several viruses and even other pathogens, as well as genotypes with resistance to the most significant plant aphid species, through mechanisms of antixenosis or antibiosis. The other way of obtaining resistant genotypes includes genetic manipulation. Genetically modified resistant pumpkins have been among the first successfully developed crops. Genotypes with pathogen derived resistance can already be found in commercially grown pumpkins in some parts of the world, and they have been developed by introducing the coat protein gene of one, two or all three viruses which are the most frequent, ZYMV, WMV and CMV. Yet, this approach to the control of pumpkin viral diseases is related to possible negative consequences, mostly through the already detected gene transfer to wild plants and development of resistant transgenic weeds of unpredictable impact on the environment. Improved host plant genetic resistance to viral infections or biological vectors, developed by conventional or genetic engineering methods, represents the most dynamic and prominent field of research. It is economically and ecologically the most justified approach to the control of pumpkin and other plant diseases caused by viruses non-persistently transmitted by aphids.

2007 ◽  
Vol 132 (4) ◽  
pp. 530-533 ◽  
Author(s):  
Juan M. Osorno ◽  
Carlos G. Muñoz ◽  
James S. Beaver ◽  
Feiko H. Ferwerda ◽  
Mark J. Bassett ◽  
...  

Bean golden yellow mosaic virus (BGYMV), incited by a whitefly (Bemisia tabaci Gennadius) transmitted geminivirus, is an important disease that can limit common bean (Phaseolus vulgaris L.) production in Central America, the Caribbean, and southern Florida. Only a few genes are currently deployed in BGYMV-resistant common bean cultivars. The identification of novel sources of resistance would help bean breeders broaden the genetic base of resistance to this important virus. Phaseolus coccineus L. germplasm accession G35172 was found by International Center for Tropical Agriculture scientists to be resistant to BGYMV. Populations derived from an interspecific cross between P. vulgaris and P. coccineus were evaluated to study the inheritance of resistance to BGYMV. Segregation ratios of F2 plants and other populations suggest that BGYMV resistance from P. coccineus is controlled by two genes. A recessive gene, with the proposed symbol bgm-3, confers resistance to leaf chlorosis and a dominant gene, with the proposed name Bgp-2, prevents pod deformation in the presence of BGYMV. Results from allelism tests with previously reported BGYMV resistance genes (bgm, bgm-2, and Bgp) and the absence of the SR-2 sequence-characterized amplified region marker for bgm support the hypothesis that bgm-3 and Bgp-2 are different genes for BGYMV resistance.


HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 338-340 ◽  
Author(s):  
T. Wai ◽  
R. Grumet

The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses: zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). In this study we sought to determine the genetics of resistance to PRSV-W. TMG-1 was crossed with WI-2757, an inbred line susceptible to all three viruses. Segregation data indicated that resistance to PRSV-W was due to a single dominant gene (proposed designation, Prsv-2). Enzyme-linked immunosorbent assay (ELISA) data suggested that the mechanism of resistance to PRSV-W differs from that for ZYMV and WMV, and may be better described as tolerance. Although the plants were free of symptoms, high PRSV-W titers existed in young expanding leaves of the TMG-1 plants and the WI-2757 × TMG-1 F1 progeny.


HortScience ◽  
2018 ◽  
Vol 53 (8) ◽  
pp. 1115-1118 ◽  
Author(s):  
Nihat Guner ◽  
Luis A. Rivera-Burgos ◽  
Todd C. Wehner

Sources of resistance to the Zucchini yellow mosaic virus-Florida strain (ZYMV-FL) have been identified within the Citrullus genus. Inheritance of resistance to ZYMV-FL was studied in PI 595203 (Citrullus mucosospermus), a resistant watermelon accession. The F1, F2, and BC1 progenies derived from the cross ‘Calhoun Gray’ (CHG) × PI 595203 and ‘New Hampshire Midget’ (NHM) × PI 595203 were used to study the inheritance of resistance to ZYMV-FL. Seedlings were inoculated with a severe isolate of ZYMV-FL at the first true leaf stage and rated weekly for at least 6 weeks on a scale of 1 to 9 on the basis of severity of viral symptoms. A single recessive gene (zym-FL) was found to control the high level of resistance to ZYMV-FL in PI 595203.


2018 ◽  
Vol 54 (No. 4) ◽  
pp. 215-221 ◽  
Author(s):  
Zakri Adel M ◽  
AL-Doss Abdullah A ◽  
Sack Markus ◽  
Ali Ahmed A ◽  
Samara Emad M ◽  
...  

Zucchini yellow mosaic virus (ZYMV), in the family Potyviridae, causes an economically important disease. Antibodies are valuable reagents for diagnostic assays to rapidly detect viral infection. Here, we report the isolation of camel-derived variable domains of the heavy chain antibody (VHH, also called nanobodies) directed against the coat protein (CP) of ZYMV. Several nanobodies that specifically recognise ZYMV-CP were identified. The isolated nanobodies showed binding not only to recombinant ZYMV-CP but also to native ZYMV, indicating that these nanobodies can be used in diagnostic tools to detect viral infections.


HortScience ◽  
2007 ◽  
Vol 42 (5) ◽  
pp. 1124-1126 ◽  
Author(s):  
Kai-Shu Ling ◽  
Amnon Levi

One-hundred ninety U.S. PIs of bottlegourd [Lagenaria siceraria (Mol.) Standl.] were evaluated for their resistance to the Florida strain of Zucchini yellow mosaic virus (ZYMV-FL). Seedlings in the first leaf stage were mechanically inoculated with freshly prepared ZYMV-FL tissue extract in a greenhouse. Four weeks postinoculation, plants were visually evaluated for symptom expression and tissue samples from upper noninoculated leaves were collected for serological analysis with enzyme-linked immunosorbent analysis (ELISA). A combination of symptom expression and ELISA value was considered in determining the resistance or susceptibility for each accession. Of the 190 L. siceraria PIs screened, 36 accessions were in complete resistance (no disease symptom with negative ELISA on all tested plants), 64 PIs showed partial resistance (some of the tested plants were resistant, whereas others were susceptible), and 90 PIs were susceptible (severe symptom and positive ELISA on all tested plants). The ZYMV-FL resistance exists mostly among L. siceraria PIs collected in India. Thirty-three of the 36 L. siceraria PIs showing ZYMV-FL resistance were collected in India, one in Indonesia, one in South Africa, and one in Zimbabwe. To rule out any potential escapes in the primary screening, a repeated test using representative accessions, including 10 susceptible, three partially resistant, and three completely resistant PIs, was done to confirm the ZYMV-FL resistance. Furthermore, the resistance to ZYMV-FL was shown to be heritable in progenies generated through self-pollination of single plants in each of five resistant PIs as well as in three F1 hybrids.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 841A-841
Author(s):  
Eileen Kabelka ◽  
Rebecca Grumet

Cucumbers and other cucurbit crops are subject to severe losses due to an array of potyviruses, including zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). Sources of resistance to these viruses have been identified within the cucumber germplasm, including resistance to ZYMV, WMV, and PRSV in `TMG-l'; resistance to PRSV in `Surinam'; and to ZYMV in `Dina'. In this study, we sought to determine the allelic relationships between resistance to PRSV in `Surinam' and `TMG' and resistance to ZYMV in `Dina' and `TMG'. Segregation ratios among F1, F2, and backcross progeny of `Surinam' and `TMG' indicated that the alleles are at the same locus. Similarly, progeny analysis indicates that the alleles for ZYMV resistance in `Dina' and `TMG' are at the same locus. In each case, however, the alleles appear to differ from one another with respect to dominance relationships, symptom expression, and/or response to different viral strains. We are further characterizing these differences by screening progeny of crosses to a common susceptible parent.


Plant Disease ◽  
2003 ◽  
Vol 87 (8) ◽  
pp. 960-964 ◽  
Author(s):  
Juan Antonio Díaz ◽  
Cristina Mallor ◽  
Carmen Soria ◽  
Rocío Camero ◽  
Elisa Garzo ◽  
...  

Two hundred and sixty-eight Cucumis melo and wild relative accessions were evaluated for resistance to Cucumber mosaic virus (CMV), Papaya ringspot virus strain W (PRSV-W), Watermelon mosaic virus (WMV), and Zucchini yellow mosaic virus (ZYMV). Symptom development and systemic infection based on double antibody sandwich enzyme-linked immunosorbent assays were monitored. Sources of resistance were scarce. However, a number of them were found among the C. melo accessions tested. Thus, the accession C-189 behaved similarly to PI 161375 and showed resistance to “common” CMV strains although it was infected by a “song” type CMV. For WMV, the accessions C-768 and C-425, although infected, exhibited very mild symptoms, and recovery from infection occurred in some occasions in the former. A similar trait was also found in C-105, although in this case symptoms rarely appear and part of the plants are not infected. In addition, C-105 was highly resistant to virus transmission by Aphis gossypii, similarly to PI 161375. Accessions C-885 and C-769 exhibited resistance to PRSV-W, WMV, and ZYMV; therefore they are potential sources of multiple resistance. Resistance traits were also found in wild relatives that could be exploited when interspecific barriers with C. melo can be circumvented.


2014 ◽  
Vol 6 (3) ◽  
pp. 321-325 ◽  
Author(s):  
Emily Ibitaiyewa AYO-JOHN ◽  
Patience Mojibade OLORUNMAIYE ◽  
Olusola O. ODEDARA ◽  
Olusayo B. DADA ◽  
Kolade O. ABIOLA ◽  
...  

Cucurbits are economic crops in Nigeria which serve as additional nutritional supplements and also good sources of income for farmers. Viral diseases are a worldwide problem of cucurbits and a major limiting factor for cucurbit production. A survey of farmer’s fields where cucurbit crops were grown was carried out to assess the incidence and severity of virus symptoms and viruses associated with the crops and weeds in selected locations in Ogun and Osun, in southwest Nigeria, in June, 2012. In all, 38 leaf samples were collected in Ogun state and 52 in Osun state from cucurbit crops and weeds. Leaf samples were tested against  Cucumber mosaic virus (CMV), Melon necrotic spot virus (MNSV), Papaya ringspot virus (PRSV), Watermelon mosaic virus (WMV),Zucchini yellow mosaic virus (ZYMV) and Cucumber green mottle mosaic virus (CGMMV) using Double Antibody Sandwich (DAS) enzyme-linked immunosorbent assay (ELISA). All the fields surveyed had virus symptom incidences of 100% except for melon fields in Osun state with incidences of between 10 and 30%. In Ogun state, the occurrence of CMV was 5/31 (16.1%) while MNSV was detected in Lagenaria siceraria and T. occidentalis and it occurred in 6.5% of the leaf samples. In Osun state, CMV was detected in watermelon, melon and weeds found in all locations surveyed. The occurrence of CMV was 9/38 (23.7%) in the cucurbit crops and in 78.6% (11/14) of the weeds. PRSV and WMV also occurred in mixed infection with CMV in 7.1% respectively. CMV was the most widespread and prevalent virus infecting cucurbit crops and weeds.Cucurbits are economic crops in Nigeria which serve as additional nutritional supplements and also good sources of income for farmers. Viral diseases are a worldwide problem of cucurbits and a major limiting factor for cucurbit production. A survey of farmer’s fields where cucurbit crops were grown was carried out to assess the incidence and severity of virus symptoms and viruses associated with the crops and weeds in selected locations in Ogun and Osun, in southwest Nigeria, in June, 2012. In all, 38 leaf samples were collected in Ogun state and 52 in Osun state from cucurbit crops and weeds. Leaf samples were tested against  Cucumber mosaic virus (CMV), Melon necrotic spot virus (MNSV), Papaya ringspot virus (PRSV), Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV) and Cucumber green mottle mosaic virus (CGMMV) using Double Antibody Sandwich (DAS) enzyme-linked immunosorbent assay (ELISA). All the fields surveyed had virus symptom incidences of 100% except for melon fields in Osun state with incidences of between 10 and 30%. In Ogun state, the occurrence of CMV was 5/31 (16.1%) while MNSV was detected in Lagenaria siceraria and T. occidentalis and it occurred in 6.5% of the leaf samples. In Osun state, CMV was detected in watermelon, melon and weeds found in all locations surveyed. The occurrence of CMV was 9/38 (23.7%) in the cucurbit crops and in 78.6% (11/14) of the weeds. PRSV and WMV also occurred in mixed infection with CMV in 7.1% respectively. CMV was the most widespread and prevalent virus infecting cucurbit crops and weeds.


HortScience ◽  
1994 ◽  
Vol 29 (2) ◽  
pp. 107-110 ◽  
Author(s):  
Raphael Z. Gilbert ◽  
Molly M. Kyle ◽  
Henry M. Munger ◽  
Stewart M. Gray

Resistance to watermelon mosaic virus (WMV) was transferred by successive backcrossing with selection from Cucumis melo PI 414723 to three melon varieties. Levels of resistance to virus accumulation in leaf tissue were evaluated using enzyme-linked immunosorbent assay, and procedures are described to select resistant individuals efficiently and accurately in segregating populations. Resistance is controlled by a single dominant. gene designated Wmr. Plants that carry this gene initially develop mosaic symptoms on inoculated leaves, but eventually recover from symptoms, and low or no virus can be detected in the youngest leaves. In contrast, susceptible plants show similar symptoms initially, but remain stunted and symptomatic with reduced fruit yield and fruit quality. Co-infection with other cucurbit viruses, specifically cucumber mosaic virus, papaya ringspot virus, and zucchini yellow mosaic virus, did not overcome resistance to WMV conferred by Wmr.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Vivek Khanal ◽  
Harrington Wells ◽  
Akhtar Ali

Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016–2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.


Sign in / Sign up

Export Citation Format

Share Document