scholarly journals Dental calculus: Nano-characterization

2012 ◽  
Vol 59 (3) ◽  
pp. 154-159
Author(s):  
Djurica Grga ◽  
Marina Marjanovic ◽  
Igor Hut ◽  
Bojan Dzeletovic ◽  
Djuro Koruga

Emerging technologies and new nanoscale information have potential to transform dental practice by improving all aspects of diagnostics and therapy. Nanocharacterization allows understanding of oral diseases at molecular and cellular levels which eventually can increase the success of prevention and treatment. Opto-magnetic spectroscopy (OMS) is a promising new technique based on light-matter interaction which allows insight into the quantum state of matter. Since biomolecules and tissues are usually paramagnetic or diamagnetic materials it is possible to determine the dynamics of para-and diamagnetism at different teeth structures using that method. The topography of the surface of a sample can be obtained with a very high resolution using atomic force microscopy (AFM), which allows observation of minimal changes up to 10 nm, while magnetic force microscopy (MFM) is used to record the magnetic field gradient and its distribution over the surface of a sample. The aim of this study was to determine the possibility of AFM and MFM for the characterization of dental calculus, and a potential application of OMS for the detection of subgingival dental calculus.

1999 ◽  
Vol 4 (S1) ◽  
pp. 411-416 ◽  
Author(s):  
L.J. Schowalter ◽  
Y. Shusterman ◽  
R. Wang ◽  
I. Bhat ◽  
G. Arunmozhi ◽  
...  

High quality, epitaxial growth of AlN and AlxGa1−xN by OMVPE has been demonstrated on single-crystal AlN substrates. Here we report characterization of epitaxial layers on an a-face AlN substrate using Rutherford Backscattering/ion channeling, atomic force microscopy (AFM), x-ray rocking curves, and preliminary electrical characterization. Ion channeling along the [100] axis gives a channeling minimum yield of 1.5% indicating a very high quality epitaxial layer.


1998 ◽  
Vol 537 ◽  
Author(s):  
L.J. Schowalter ◽  
Y. Shusterman ◽  
R. Wang ◽  
I. Bhat ◽  
G. Arunmozhi ◽  
...  

AbstractHigh quality, epitaxial growth of AlN and AlxGal-xN by OMVPE has been demonstrated on single-crystal AIN substrates. Here we report characterization of epitaxial layers on an a-face AlN substrate using Rutherford Backscattering/ion channeling, atomic force microscopy (AFM), x-ray rocking curves, and preliminary electrical characterization. Ion channeling along the [1010] axis gives a channeling minimum yield of 1.5% indicating a very high quality epitaxial layer.


Author(s):  
M. Iwatsuki ◽  
S. Kitamura ◽  
A. Mogami

Since Binnig, Rohrer and associates observed real-space topographic images of Si(111)-7×7 and invented the scanning tunneling microscope (STM),1) the STM has been accepted as a powerful surface science instrument.Recently, many application areas for the STM have been opened up, such as atomic force microscopy (AFM), magnetic force microscopy (MFM) and others. So, the STM technology holds a great promise for the future.The great advantages of the STM are its high spatial resolution in the lateral and vertical directions on the atomic scale. However, the STM has difficulty in identifying atomic images in a desired area because it uses piezoelectric (PZT) elements as a scanner.On the other hand, the demand to observe specimens under UHV condition has grown, along with the advent of the STM technology. The requirment of UHV-STM is especially very high in to study of surface construction of semiconductors and superconducting materials on the atomic scale. In order to improve the STM image quality by keeping the specimen and tip surfaces clean, we have built a new UHV-STM (JSTM-4000XV) system which is provided with other surface analysis capability.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Author(s):  
Willian Silva Conceição ◽  
Ştefan Ţălu ◽  
Robert Saraiva Matos ◽  
Glenda Quaresma Ramos ◽  
Fidel Guereiro Zayas ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Arnaud Millet

The mechanosensitivity of cells has recently been identified as a process that could greatly influence a cell’s fate. To understand the interaction between cells and their surrounding extracellular matrix, the characterization of the mechanical properties of natural polymeric gels is needed. Atomic force microscopy (AFM) is one of the leading tools used to characterize mechanically biological tissues. It appears that the elasticity (elastic modulus) values obtained by AFM presents a log-normal distribution. Despite its ubiquity, the log-normal distribution concerning the elastic modulus of biological tissues does not have a clear explanation. In this paper, we propose a physical mechanism based on the weak universality of critical exponents in the percolation process leading to gelation. Following this, we discuss the relevance of this model for mechanical signatures of biological tissues.


2013 ◽  
Vol 22 ◽  
pp. 85-93
Author(s):  
Shuang Yi Liu ◽  
Min Min Tang ◽  
Ai Kah Soh ◽  
Liang Hong

In-situ characterization of the mechanical behavior of geckos spatula has been carried out in detail using multi-mode AFM system. Combining successful application of a novel AFM mode, i.e. Harmonix microscopy, the more detail elastic properties of spatula is brought to light. The results obtained show the variation of the mechanical properties on the hierarchical level of a seta, even for the different locations, pad and stalk of the spatula. A model, which has been validated using the existing experimental data and phenomena as well as theoretical predictions for geckos adhesion, crawling and self-cleaning of spatulae, is proposed in this paper. Through contrast of adhesive and craw ability of the gecko on the surfaces with different surface roughness, and measurement of the surface adhesive behaviors of Teflon, the most effective adhesion of the gecko is more dependent on the intrinsic properties of the surface which is adhered.


Sign in / Sign up

Export Citation Format

Share Document