scholarly journals Methods of characterization of multiphase Nd-Fe-B melt-spun alloys

2007 ◽  
Vol 39 (2) ◽  
pp. 193-198 ◽  
Author(s):  
A. Grujic ◽  
V. Cosovic ◽  
J. Stajic-Trosic ◽  
A. Maricic ◽  
N. Talijan

Nanocomposite permanent magnetic materials based on Nd-Fe-B alloys with a low Nd content are a new type of permanent magnetic material. The microstructure of these nanocomposite permanent magnets is composed of a mixture of magnetically soft and hard phases providing the so called exchange coupling effect. Beside the optimization process parameters, methods of characterization have a very important role in the design of an optimal magnetic matrix of multiphase melt-spun Nd-Fe-B alloys. Different methods and techniques of characterization were used for observation and study of the microstructure evolution during crystallization. A summary results of measurements using different methods of characterization are presented to enable a better insight into relations between the microstructure and magnetic properties of the investigated melt-spun Nd-Fe-B alloys. .

2005 ◽  
Vol 41 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Nadezda Talijan ◽  
Jasna Stajic-Trosic ◽  
Aleksandar Grujic ◽  
Vladan Cosovic ◽  
Vladimir Menushenkov ◽  
...  

The influence on the magnetic properties of nanocristalline ribbons and powders has character of microstructure, between others ? the grain size volume of hard and soft magnetic phases and their distribution. Magnetic properties of ribbons and powders depend mainly on their chemical composition and parameters of their heat treatment [1]. Technology of magnets from nanocristalline ribbon consists of the following process: preparing the Nd-Fe- B alloy, preparing the ribbon, powdering of the ribbon, heat treatment of the powder and finally preparing the magnets. Nanocomposite permanent magnet materials based on Nd-Fe- B alloy with Nd low content are a new type of permanent magnetic material. The microstructure of this nanocomposite permanent magnet is composed of a mixture of magnetically soft and hard phases which provide so called exchange coupling effect.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1663-1669 ◽  
Author(s):  
H. W. Chang ◽  
S. T. Huang ◽  
I. W. Chen ◽  
C. W. Chang ◽  
W. C. Chang

The effects of Hf substitution and C content on the magnetic properties, phase evolution, and microstructure of melt spun ( Sm , Pr ) Co 7- x Hf x C y ( x = 0-0.5; y = 0-0.14) ribbons have been studied. A proper Hf substitution is helpful not only in stabilizing 1:7 phase but also in enhancing its magnetic anisotropy field. As a result, magnetic properties of B r = 6.4 kG , i H c = 7.3 kOe and ( BH ) max = 8.7 MGOe for SmCo 6.9 Hf 0.1 ribbons are obtained. Besides, a small amount of C addition in the ribbons could slightly modify phase constitution and effectively refine their microstructure to strengthen the exchange coupling effect between magnetic grains. Furthermore, a slight Pr substitution for Sm may further increase the magnetization and the magnetic properties of the ribbons. The optimal magnetic properties of B r = 7.1 kG , i H c = 8.5 kOe and ( BH ) max = 11.2 MGOe could be achieved for the directly quenched Sm 0.8 Pr 0.2 Co 6.9 Hf 0.1 C 0.12 ribbons.


2006 ◽  
Vol 6 (11) ◽  
pp. 3417-3421 ◽  
Author(s):  
Chang Woo Kim ◽  
Young Hwan Kim ◽  
Hyun Gil Cha ◽  
Don Keun Lee ◽  
Young Soo Kang

The monodispersed FeCo nanoparticles were synthesized with borohydride as a reducing agent by coprecipitation method in aqueous solution. The composition and the size of FeCo nanoparticle was controlled by fitting the molar ratio of starting material, the reaction time and the falling rate. To prepare the crystallized nanoparticles, the amorphous FeCo nanoparticles were annealed at the different temperatures for 1 hr, respectively. The size of the crystalline FeCo nanoparticles was controlled in order to maintain the uniform size of 20nm. The as-annealed FeCo alloy could get the highest Ms value of the powder which has been ever synthesized by coprecipitation or other chemical method. The size- and shape-controlled crystalline FeCo nanoparticles can be applied for spring magnet in order to get exchange coupling effect.


2010 ◽  
Vol 638-642 ◽  
pp. 1749-1754
Author(s):  
X.F. Wang ◽  
X.Y. Chen ◽  
Z.L. Jiang ◽  
Y. Chen ◽  
H.M. Chen

Nd2Fe14B/-Fe nanocomposite permanent magnet contains the hard and soft magnetic phases, Nd2Fe14B and -Fe respectively. An exchange coupling effect exists between the two magnetic phases. The effect of alloying element Nb on its nanostructure and properties have been studied. Adding Nb to the alloy is effective to refine grains, a relatively small grain size causes a high intrinsic coercivity, remanence and therefore a high maximum energy product, (BH)max. MFM (Magnetic Force Microscope) was used to observe the magnetic micro-domain structure in the nanophase alloys. The length of the magnetic contrast shows a significant dependence on the microstructure and phase constitution, and the longer length is correspond with the larger exchange coupling effect between the soft and hard magnetic phases.


2008 ◽  
Vol 01 (03) ◽  
pp. 183-187 ◽  
Author(s):  
H. W. CHANG ◽  
S. T. HUANG ◽  
I. W. CHEN ◽  
C. W. CHANG ◽  
W. C. CHANG

The effects of Hf substitution and C content on the magnetic properties, phase evolution and microstructure of melt spun ( Sm , Pr ) Co 7-x Hf x C y (x = 0–0.5; y = 0–0.14) ribbons have been studied. A proper Hf substitution is helpful not only in stabilizing 1:7 phase but also in enhancing its magnetic anisotropy field, as a result, magnetic properties of B r = 6.4 kG , i H c = 7.3 kOe and (BH) max = 8.7 MGOe for SmCo 6.9 Hf 0.1 ribbons are obtained. Besides, a small amount of C addition in the ribbons could slightly modify phase constitution and effectively refine their microstructure to strengthen the exchange coupling effect between magnetic grains. It leads to the improvement of the magnetic properties for SmCo 6.8 Hf 0.2 C 0.12 nanocomposites. Finally, a slight Pr substitution for Sm may further increase the magnetization and the magnetic properties, the optimal magnetic properties of B r = 7.1 kG , i H c = 8.5 kOe and (BH) max = 11.2 MGOe could be achieved for the directly quenched Sm 0.8 Pr 0.2 Co 6.9 Hf 0.1 C 0.12 ribbons.


2012 ◽  
Vol 569 ◽  
pp. 23-26 ◽  
Author(s):  
Jie Qiu ◽  
Shan Dong Li ◽  
Mei Mei Liu ◽  
Jian Peng Wu ◽  
Yi Hu ◽  
...  

Nanocomposite (Nd,Dy)2Fe14B/α-Fe magnets were prepared by directly solidification (DS). The effect of wheel speed on the magnetic properties, microstructure and exchange coupling interaction has been studied. It was found that a uniform R2Fe14B/α-Fe nanocomposite structure with fine α-Fe grains can be developed at an optimum wheel speed of about 18 m/s. Without any heat treatment, the optimal ribbons (v = 18 m/s) show a strong exchange coupling interaction and good magnetic properties, e.g. iHc=1027 kA/m, mr =0.71, (BH)max=174 kJ/m3.


2018 ◽  
Vol 930 ◽  
pp. 440-444
Author(s):  
Melissa Rohrig Martins da Silva ◽  
R.G.T. Fim ◽  
S.C. Silva ◽  
Julio Cesar Serafim Casini ◽  
P.A.P. Wendhausen ◽  
...  

The addition of alloying elements on rare-earth permanent magnets is one of the methods used to improve the magnetic properties. This present work evaluates the influence of alloying elements such as Zr, Nb and Mo on the microstructure and magnetic properties of sintered Pr-FeCo-B based permanent magnets. The permanent magnets were produced by the conventional powder metallurgy route using powder obtained by hydrogen-decrepitation (HD) method from as cast alloys. In order to produce the magnet Pr16Fe66,9Co10,7B5,7Cu0,7 without alloying elements the mixture of alloys method was employed, mixing two compositions: Pr20Fe73B5Cu2 (33% w.t) and Pr14Fe64Co16B6 (67% w.t). With the purpose of evaluating the influence of the alloying elements, the Pr14Fe64Co16B6X0,1 (where X= Zr, Nb or Mo) (67% w.t) alloy was employed. The characterization of the alloys and the magnets was carried out using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS) and the magnetic properties were measured using a permeameter. The magnet without any additions presented the highest intrinsic coercivity (μ0iHc = 748 KA.m-1) while the magnet with Nb addition presented higher remanence (Br = 1,04 T). The magnet with Zr addition presented the highest maximum energy product (BHmáx = 144 KJ.m-3), and the magnet with Mo addition showed the highest squareness factor (SF = 0,73).


2003 ◽  
Vol 2003 (4) ◽  
pp. 191-194 ◽  
Author(s):  
Malti Sharma ◽  
Anirudh Singh ◽  
Ram C. Mehrotra

Heterotrimetallic isopropoxides of the composition [{Zr2(OPri)9}Ba{M(OPri)3}]2 have been prepared by the in situ reactions of MCl2 [M = Be, Mg, Zn, Sn(II], Co, Ni, Cu(II), KZr2(OPri)9 and KBa(OPri)3 in equimolar amounts. Reaction of [{Zr2(OPri)9}Ba{Zn(OPri)3}]2 with tertiary butyl alcohol has been studied to gain an insight into its structure. All new derivatives have been characterised by elemental analyses, spectroscopic [IR, UV–VIS, and NMR (1H, 13C, and 119Sn)] studies and molecular weight measurements.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document