scholarly journals Modelling the spatial distribution of Vojvodina’s population by using dasymetric method

Spatium ◽  
2011 ◽  
pp. 45-50 ◽  
Author(s):  
Nikola Krunic ◽  
Branislav Bajat ◽  
Milan Kilibarda ◽  
Dragutin Tosic

Cartographic presentation of heterogeneity/homogeneity in the spatial distribution of population is still a major problem in modern geography, and other geo-sciences as well. The traditional method of thematic or choropleth mapping rarely gives satisfactory results. This paper analyzes the applicability of dasymetric mapping method for the modelling of spatial distribution of population. Although it is a relatively old method, it becomes widely used following the development of computer technology, GIS and satellite imagery, and its applicability is increasing in social, economic and other sciences and disciplines. After showing the basis and development of dasymetric mapping, the authors present possible application of this method in the population distribution modelling of Vojvodina.

2008 ◽  
Vol 8 (3) ◽  
pp. 409-420 ◽  
Author(s):  
H. Taubenböck ◽  
J. Post ◽  
A. Roth ◽  
K. Zosseder ◽  
G. Strunz ◽  
...  

Abstract. This study aims at creating a holistic conceptual approach systematizing the interrelation of (natural) hazards, vulnerability and risk. A general hierarchical risk meta-framework presents potentially affected components of a given system, such as its physical, demographic, social, economic, political or ecological spheres, depending on the particular hazard. Based on this general meta-framework, measurable indicators are specified for the system "urban area" as an example. This framework is used as an outline to identify the capabilities of remote sensing to contribute to the assessment of risk. Various indicators contributing to the outline utilizing diverse remote sensing data and methods are presented. Examples such as built-up density, main infrastructure or population distribution identify the capabilities of remote sensing within the holistic perspective of the framework. It is shown how indexing enables a multilayer analysis of the complex and small-scale urban landscape to take different types of spatial indicators into account to simulate concurrence. The result is an assessment of the spatial distribution of risks within an urban area in the case of an earthquake and its secondary threats, using an inductive method. The results show the principal capabilities of remote sensing to contribute to the identification of physical and demographic aspects of vulnerability, as well as provide indicators for the spatial distribution of natural hazards. Aspects of social, economic or political indicators represent limitations of remote sensing for an assessment complying with the holistic risk framework.


2021 ◽  
Vol 13 (2) ◽  
pp. 284
Author(s):  
Dan Lu ◽  
Yahui Wang ◽  
Qingyuan Yang ◽  
Kangchuan Su ◽  
Haozhe Zhang ◽  
...  

The sustained growth of non-farm wages has led to large-scale migration of rural population to cities in China, especially in mountainous areas. It is of great significance to study the spatial and temporal pattern of population migration mentioned above for guiding population spatial optimization and the effective supply of public services in the mountainous areas. Here, we determined the spatiotemporal evolution of population in the Chongqing municipality of China from 2000–2018 by employing multi-period spatial distribution data, including nighttime light (NTL) data from the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) and the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS). There was a power function relationship between the two datasets at the pixel scale, with a mean relative error of NTL integration of 8.19%, 4.78% less than achieved by a previous study at the provincial scale. The spatial simulations of population distribution achieved a mean relative error of 26.98%, improved the simulation accuracy for mountainous population by nearly 20% and confirmed the feasibility of this method in Chongqing. During the study period, the spatial distribution of Chongqing’s population has increased in the west and decreased in the east, while also increased in low-altitude areas and decreased in medium-high altitude areas. Population agglomeration was common in all of districts and counties and the population density of central urban areas and its surrounding areas significantly increased, while that of non-urban areas such as northeast Chongqing significantly decreased.


2019 ◽  
Vol 8 (4) ◽  
pp. 166 ◽  
Author(s):  
Ananda Karunarathne ◽  
Gunhak Lee

Since populations in the developing world have been rapidly increasing, accurately determining the population distribution is becoming more critical for many countries. One of the most widely used population density estimation methods is dasymetric mapping. This can be defined as a precise method for areal interpolation between different spatial units. In most applications of dasymetric mapping, land use and land cover data have been considered as ancillary data for the areal disaggregation process. This research presents an alternative dasymetric approach using area specific ancillary data for hilly area population mapping in a GIS environment. Specifically, we propose a Hilly Area Dasymetric Mapping (HDM) technique by combining topographic variables and land use to better disaggregate hilly area population distribution at fine-grain division of ancillary units. Empirical results for Sri Lanka’s highest mountain range show that the combined dasymetric approach estimates hilly area population most accurately and because of the significant association that is found to exist between topographic variables and population distribution within this setting. This research is expected to have significant implications for national and regional planning by providing useful information about actual population distributions in environmentally hazardous and sparsely populated areas.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1498 ◽  
Author(s):  
Taraprasad Bhowmick ◽  
Yong Wang ◽  
Michele Iovieno ◽  
Gholamhossein Bagheri ◽  
Eberhard Bodenschatz

The physics of heat and mass transfer from an object in its wake has significant importance in natural phenomena as well as across many engineering applications. Here, we report numerical results on the population density of the spatial distribution of fluid velocity, pressure, scalar concentration, and scalar fluxes of a wake flow past a sphere in the steady wake regime (Reynolds number 25 to 285). Our findings show that the spatial population distributions of the fluid and the transported scalar quantities in the wake follow a Cauchy-Lorentz or Lorentzian trend, indicating a variation in its sample number density inversely proportional to the squared of its magnitude. We observe this universal form of population distribution both in the symmetric wake regime and in the more complex three dimensional wake structure of the steady oblique regime with Reynolds number larger than 225. The population density distribution identifies the increase in dimensionless kinetic energy and scalar fluxes with the increase in Reynolds number, whereas the dimensionless scalar population density shows negligible variation with the Reynolds number. Descriptive statistics in the form of population density distribution of the spatial distribution of the fluid velocity and the transported scalar quantities is important for understanding the transport and local reaction processes in specific regions of the wake, which can be used e.g., for understanding the microphysics of cloud droplets and aerosol interactions, or in the technical flows where droplets interact physically or chemically with the environment.


2012 ◽  
Vol 594-597 ◽  
pp. 2394-2397
Author(s):  
Jian Cui ◽  
Dong Ling Ma ◽  
Fei Cai

With the rapid development of computer technology, communications technology, and other related technologies, the Digital City has become a hot topic of current research. The traditional method of constructing digital city based on ArcGis is very complex, the type of computer software that related is much more, and the interaction between the software is poor. For the traditional method of digital urban design is difficult to design and visualization effect is poor, this paper builds the techniques of campus apartment modeling based on the skyline combined specific examples of campus apartments, realizes three dimensional (3D) visualization and query and analysis functions of the campus apartment system and proposes a simple method of creating 3D landscape efficiently.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 640
Author(s):  
Jonathan R. Potts

A fundamental goal of ecology is to understand the spatial distribution of species. For moving animals, their location is crucially dependent on the movement mechanisms they employ to navigate the landscape. Animals across many taxa are known to exhibit directional correlation in their movement. This work explores the effect of such directional correlation on spatial pattern formation in a model of between-population taxis (i.e., movement of each population in response to the presence of the others). A telegrapher-taxis formalism is used, which generalises a previously studied diffusion-taxis system by incorporating a parameter T, measuring the characteristic time for directional persistence. The results give general criteria for determining when changes in T will drive qualitative changes in the predictions of linear pattern formation analysis for N ≥ 2 populations. As a specific example, the N = 2 case is explored in detail, showing that directional correlation can cause one population to ‘chase’ the other across the landscape while maintaining a non-constant spatial distribution. Overall, this study demonstrates the importance of accounting for directional correlation in movement for understanding both quantitative and qualitative aspects of species distributions.


Sign in / Sign up

Export Citation Format

Share Document