scholarly journals The digital model as a key tool for preserving architectural heritage in strategic master planning

2021 ◽  
Vol 263 ◽  
pp. 05014
Author(s):  
Svetlana Maksimova ◽  
Anastasia Semina ◽  
Anna Shamarina ◽  
Anna Balandina

The possibilities and role of a three-dimensional spatial model are considered on the example of the historical and architectural Usolye Stroganovsky museum-reserve strategic master plan (Perm region). In the context of heritage preservation, the master plan was shown not only as a strategic document, but also as a communication tool between various branches of government in order to integrate heritage protection policy into the system of general urban planning policy. The methodological approach is based on use of a digital three-dimensional model obtained by laser scanning and photogrammetry. A portable and ground-based laser scanning to create the point cloud is presented. The architectural and urban planning solutions of the strategic master plan are based on the dynamic 3D model and static visualizations of individual elements. The results of virtual reconstruction are shown. The level of detail of 3D models is LOD 200. Virtual reconstruction and visualization have shown themselves not only as a reliable communication tool for the decision-making management, but also as a way to quickly obtain a complex of urban planning and design documentation suitable for reconstruction and restoration of historical and architectural heritage.

Spatium ◽  
2016 ◽  
pp. 30-36 ◽  
Author(s):  
Petar Pejic ◽  
Sonja Krasic

Digital three-dimensional models of the existing architectonic structures are created for the purpose of digitalization of the archive documents, presentation of buildings or an urban entity or for conducting various analyses and tests. Traditional methods for the creation of 3D models of the existing buildings assume manual measuring of their dimensions, using the photogrammetry method or laser scanning. Such approaches require considerable time spent in data acquisition or application of specific instruments and equipment. The goal of this paper is presentation of the procedure for the creation of 3D models of the existing structures using the globally available web resources and free software packages on standard PCs. This shortens the time of the production of a digital three-dimensional model of the structure considerably and excludes the physical presence at the location. In addition, precision of this method was tested and compared with the results acquired in a previous research.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 496 ◽  
Author(s):  
Zheng Sun ◽  
Yingying Zhang

Three-dimensional (3D) reconstruction using video frames extracted from spherical cameras introduces an innovative measurement method in narrow scenes of architectural heritage, but the accuracy of 3D models and their correlations with frame extraction ratios and blur filters are yet to be evaluated. This article addresses these issues for two narrow scenes of architectural heritage that are distinctive in layout, surface material, and lighting conditions. The videos captured with a hand-held spherical camera (30 frames per second) are extracted to frames with various ratios starting from 10 and increasing every 10 frames (10, 20, …, n). Two different blur assessment methods are employed for comparative analyses. Ground truth models obtained from terrestrial laser scanning and photogrammetry are employed for assessing the accuracy of 3D models from different groups. The results show that the relative accuracy (median absolute errors/object dimensions) of spherical-camera videogrammetry range from 1/500 to 1/2000, catering to the surveying and mapping of architectural heritage with medium accuracy and resolution. Sparser baselines (the length between neighboring image pairs) do not necessarily generate higher accuracy than those from denser baselines, and an optimal frame network should consider the essential completeness of complex components and potential degeneracy cases. Substituting blur frames with adjacent sharp frames could reduce global errors by 5–15%.


Author(s):  
M. Liuzzo ◽  
R. Feo ◽  
S. Giuliano ◽  
V. Pampalone

<p><strong>Abstract.</strong> This study presents an integrated approach for reading coastal sites. A process aimed at protecting and enhancing these sites must be developed alongside a targeted interdisciplinary strategy, closely linked to the fields of archaeology, survey, landscape reading, morphology of the territory and geology. These must no longer be managed as individual cognitive elements, but within a single comprehensive analytical interpretation model.</p><p>The experiment activity carried out along the rocky area of Aci Castello, on the eastern coast of Sicily, was developed using a methodological approach based on the integration of 3D data coming from various survey technologies &amp;ndash; 3D laser scanning, mobile mapping and echo sounder systems. The aim of the experiment was to create a complete three-dimensional model of the studied area, focused on obtaining a dynamic understanding, that is punctual and comprehensive, of the site’s value and fragility.</p>


2012 ◽  
Vol 476-478 ◽  
pp. 2411-2414
Author(s):  
Qiu Long Liu ◽  
Wu Sheng Hu

3D (three-dimensional) laser scanning can be used to collect spatial location of points rapidly and abundantly, and obtain three-dimensional coordinates of the target surface, which provides new technical means for the rapid creation of three-dimensional image model of the object. A three-dimensional modeling study on spatial object was carried out using the spatial data captured via ground-based 3D laser scanner in the Hui-Quan substation. The experiment result shows that rapid 3D visualization modeling on buildings can be achieved via the methods and procedures mentioned above. It has solved that the traditional equipment and the measuring technique is insufficiency in the special domain. It will bring the application mode and technical advantage, which tradition mapping way can not have. A platform for three-dimensional model of the substation can be achieved for the resources, landscape, security, environmental management and other social resources of digital, networked and dynamic visualization.By taking WuXi Hui-Quan Substation as the research object, building 3D models by Three-dimensional laser scanning technology and embedding 3D-GIS, Meanwhile, combining existing 2D-geographical spatial data, data preparation, construction of 3D-model, 3D-visualization, space inquiry and analysis, information management are given systematic analysis and research. In the end, in the programming environment of C#2.0, Skyline software is employed with its open Application Programmed Interface (API), which constructs 3D-scenes and 3D-terrain models of WuXi Hui-Quan Substation and comes to the realization of 3D-visualization, property inquiry and edit of Attribute data.


2021 ◽  
Vol 11 (2) ◽  
pp. 185-192
Author(s):  
I-Jyh Wen ◽  
Chien Wei Liang

In petrochemical industry, the execution of construction involves three main issues, namely, design planning, construction, and job safety. Three-dimensional (3D) models are increasingly applied to design and construction. However, the improper concept of 3D design has bred potential unsatisfactory behaviors and the lack of vigilance among workers. Besides, many employees are not fully aware of the safety in 3D design and construction planning. Therefore, our goal is to improve the safety and health of construction workers through design practices in the upstream of the construction phase, and verify the applicability of the combination of 3D models and safety knowledge. Specifically, a questionnaire survey was carried out among 124 employees in the construction-related fields of the petrochemical industry. The collected data were processed, and statically analyzed on SPSS. The results show that safety knowledge was acceptable in 3D model design from the perspective of project executors, and the integration of safety knowledge into the design helps to improve the safety environment of the construction site.


2018 ◽  
Vol 35 ◽  
pp. 03002 ◽  
Author(s):  
Sławomir Porzucek ◽  
Monika Łój ◽  
Karolina Matwij ◽  
Wojciech Matwij

In the region of Siesławice (near Busko-Zdrój, Poland) there are unique phenomena of gypsum karst. Atmospheric factors caused numerous gypsum outcrops, canals and underground voids. The article presents the possibility of using non-invasive gravimetric surveys supplemented with geodetic measurements to illustrate karst changes occurring around the void. The use of modern geodetic measurement techniques including terrestrial and airborne laser scanning enables to generate a digital terrain model and a three-dimensional model of voids. Gravimetric field studies allowed to map the anomalies of the gravitational field of the near-surface zone. Geodetic measurement results have made it possible to accurately determine the terrain correction that supplemented the gravimetric anomaly information. Geophysical interpretation indicate the presence of weathered rocks in the near surface zone and fractures and loosened zones located surround the karst cave.


2020 ◽  
Vol 11 (23) ◽  
pp. 106
Author(s):  
Damiano Aiello ◽  
Cecilia Bolognesi

<p class="VARAbstract">Can we preserve cultural heritage and, consequently, the memory of the past? To answer this question, one should look at the digital revolution that the world has gone through in recent decades and analyse the complex and the dialectical relationship between cultural heritage and new technologies. Thanks to these, increasingly accurate reconstructions of archaeological sites and historical monuments are possible. The resulting digital replicas are fundamental to experience and understand cultural heritage in innovative ways: they have complex and dynamic relationships with the original objects. This research paper highlights the importance and the scientific validity of digital replicas aimed at understanding, enhancing and protecting cultural heritage. The study focuses on the virtual reconstruction of the constructive phases, from the mid-15<sup>th</sup> century to date, of one of the most emblematic Gothic-Renaissance buildings in the city of Milan (Italy): the convent of Santa Maria delle Grazie, famous worldwide for hosting Leonardo da Vinci's Last Supper painting. This site proved to be an ideal case study because of its troubled and little-known history that led to numerous changes over the centuries. Thanks to a methodological approach based on the analysis of the documentary sources and three-dimensional (3D) modelling, it was possible to outline the chronological succession of the convent transformations; the way in which these overlapped the pre-existing structures was described starting from the Renaissance harmonious and organic interventions, to finally reach 18<sup>th</sup>-19<sup>th </sup>centuries inhomogeneous and incompatible additions. Finally, the research was completed by mapping the 3D models based on the sources used and their different levels of accuracy. The 3D models have thus become a valid tool for checking and verifying the reconstruction hypotheses.</p><p class="VARAbstract">Highlights:</p><ul><li><p>The study focused on the virtual reconstruction of the convent of Santa Maria delle Grazie, one of the most emblematicGothic-Renaissance buildings in the city of Milan.</p></li><li><p>By combining data from documentary sources, architectural treatises, period photos and digital survey, the mainbuilding phases of the convent, from the 15th century to date, were digitally reconstructed.</p></li><li><p>The 3D models are enriched with information about the accuracy of the digital reconstruction, creating 3D databasesthat can be easily consulted and updated.</p></li></ul>


Author(s):  
M. Marčiš ◽  
P. Barták ◽  
D. Valaška ◽  
M. Fraštia ◽  
O. Trhan

In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


2021 ◽  
Vol 20 (7) ◽  
pp. 48-61
Author(s):  
Pavel V. Chistyakov ◽  
Ekaterina N. Bocharova ◽  
Ksenia A. Kolobova

This article provides a detailed account of the process of scanning, post-processing and further manipulation of three-dimensional models obtained with structured light scanners. Purpose. The purpose of the study is determined by the need for national archaeologists to learn the methods of three-dimensional modeling for the implementation of scientific research corresponding to international standards. Unfortunately, this direction in national archaeology began to develop in a relatively recent time and there is a lag in the application of three-dimensional modeling of national archaeology compared to the world level. Results. Any archaeological, experimental or ethnographic artifact can be used for three-dimensional scanning. To perform post-processing of three-dimensional models it is necessary to carry out primary scanning of an artifact by one of the existing algorithms. The algorithm for creating models, their positioning, simplification, saving in various formats and export is described. The main sequence of 3D models post-processing includes: processing of groups of scanned projections (their cleaning and alignment), creation of artifact model and processing/rectification of the resulting model using special software. Conclusion. As a result of correct implementation of the algorithm, the researcher receives a scaled model completely corresponding to the original artifact. Obtaining a scalable, texture-free three-dimensional model of the artifact, which fully corresponds to the original and exceeds a photograph in the quality of detail transfer, allows a scientist to conduct precise metric measurements and any procedures of non-invasive manipulation of the models. The ability to access a database of three-dimensional models of archaeological collections greatly simplifies the work of archaeologists, especially in situations when country borders are closed.


Sign in / Sign up

Export Citation Format

Share Document