scholarly journals Radiation and mass transfer effects on an unsteady MHD free convection flow past a heated vertical plate in a porous medium with viscous dissipation

2007 ◽  
Vol 34 (2) ◽  
pp. 135-160 ◽  
Author(s):  
Ramachandra Prasad ◽  
Bhaskar Reddy

An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases.

2010 ◽  
Vol 37 (4) ◽  
pp. 263-287 ◽  
Author(s):  
Hemant Poonia ◽  
R.C. Chaudhary

An unsteady, two-dimensional, hydromagnetic, laminar mixed convective boundary layer flow of an incompressible and electrically-conducting fluid along an infinite vertical plate embedded in the porous medium with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer are discussed. The results show that increased cooling (Gr > 0) of the plate and the Eckert number leads to a rise in the velocity profile. Also, an increase in Eckert number leads to an increase in the temperature. Effects of Sc on velocity and concentration are discussed and shown graphically.


2016 ◽  
Vol 21 (1) ◽  
pp. 143-155 ◽  
Author(s):  
B. Prabhakar Reddy

Abstract In this paper, a numerical solution of mass transfer effects on an unsteady free convection flow of an incompressible electrically conducting viscous dissipative fluid past an infinite vertical porous plate under the influence of a uniform magnetic field considered normal to the plate has been obtained. The non-dimensional governing equations for this investigation are solved numerically by using the Ritz finite element method. The effects of flow parameters on the velocity, temperature and concentration fields are presented through the graphs and numerical data for the skin-friction, Nusselt and Sherwood numbers are presented in tables and then discussed.


2009 ◽  
Vol 13 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Pushkar Sharma ◽  
Gurminder Singh

Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 413-422 ◽  
Author(s):  
Hitesh Kumar

An analytical study is performed to explore the flow and heat transfer characteristics of nanofluid (Al2O3-water and TiO3-water) over a linearly stretching porous sheet in the presence of radiation, ohmic heating, and viscous dissipation. Homotopy perturbed method is used and complete solution is presented, the results for the nanofluids velocity and temperature are obtained. The effects of various thermophysical parameters on the boundary-layer flow characteristics are displayed graphically and discussed quantitatively. The effect of viscous dissipation on the thermal boundary-layer is seen to be reverse after a fixed distance from the wall, which is very strange in nature and is the result of a reverse flow. The finding of this paper is unique and may be useful for future research on nanofluid.


2012 ◽  
Vol 11 (3) ◽  
pp. 51-76
Author(s):  
J Prakash ◽  
B Rushi Kumar ◽  
R Sivaraj

This study examines the problem of steady, MHD, mixed convection flow of an incompressible viscous fluid past a semi-infinite vertical permeable plate with slip condition at the boundary layer. The flow field is exposed to the influence of buoyancy, Ohmic heating and Soret effects. The governing equations include the continuity, linear momentum, energy and mass transfer equations which are solved analytically by using perturbation method. The results of this parametric study on the velocity, temperature and concentration distributions are shown graphically and the physical aspects of the problem are highlighted and discussed. The effect of shear stress, rate of heat and mass transfer coefficients at the channel walls are displayed in tables.


Author(s):  
Yap Bing Kho ◽  
Rahimah Jusoh ◽  
Mohd Zuki Salleh ◽  
Muhammad Khairul Anuar Mohamed ◽  
Zulkhibri Ismail ◽  
...  

The effects of viscous dissipation on the boundary layer flow of hybrid nanofluids have been investigated. This study presents the mathematical modelling of steady two dimensional boundary layer flow of Cu-TiO2 hybrid nanofluid. In this research, the surface of the model is stretched and shrunk at the specific values of stretching/shrinking parameter. The governing partial differential equations of the hybrid nanofluid are reduced to the ordinary differential equations with the employment of the appropriate similarity transformations. Then, Matlab software is used to generate the numerical and graphical results by implementing the bvp4c function. Subsequently, dual solutions are acquired through the exact guessing values. It is observed that the second solution adhere to less stableness than first solution after performing the stability analysis test. The existence of viscous dissipation in this model is dramatically brought down the rate of heat transfer. Besides, the effects of the suction and nanoparticles concentration also have been highlighted. An increment in the suction parameter enhances the magnitude of the reduced skin friction coefficient while the augmentation of concentration of copper and titanium oxide nanoparticles show different modes.


2015 ◽  
Vol 25 (7) ◽  
pp. 1557-1573 ◽  
Author(s):  
G. Venkata Ramana Reddy ◽  
Ali J Chamkha

Purpose – The purpose of this paper is to study chemical reaction and heat and mass transfer effects on steady free convection flow in an inclined porous plate in the presence of MHD and viscous dissipation through the application of scaling group of transformation and numerical method. Design/methodology/approach – The fourth-order Runge-Kutta along with the shooting method is employed in the numerical solution of the governing equations. Findings – The magnetic field parameter, the permeability of porous medium and the viscous dissipation are demonstrated to exert a more significant effect on the flow field and, thus, on the heat transfer from the plate to the fluid. Originality/value – The problem is relatively original.


2014 ◽  
Vol 19 (2) ◽  
pp. 303-320 ◽  
Author(s):  
B. Prabhakar Reddy

Abstract The thermal diffusion and viscous dissipation effects on an unsteady MHD free convection heat and mass transfer flow of an incompressible, electrically conducting, fluid past an infinite vertical porous plate embedded in a porous medium of time dependent permeability under oscillatory suction velocity in the presence of a heat absorbing sink have been studied. It is considered that the influence of a uniform magnetic field acts normal to the flow and the permeability of the porous medium fluctuates with time. The dimensionless governing equations for this investigation have been solved numerically by using the efficient Galerkin finite element method. The numerical results obtained have been presented through graphs and tables for the thermal Grashof number (Gr > 0) corresponding to the cooling of the porous plate and (Gr < 0) corresponding to heating of the porous plate to observe the effects of various material parameters encountered in the problem under investigation. Numerical data for skin-friction, Nusselt and Sherwood numbers are tabulated and then discussed.


Sign in / Sign up

Export Citation Format

Share Document