scholarly journals Homotopy pertubation method analysis to MHD flow of a radiative nanofluid with viscous dissipation and ohmic heating over a stretching porous plate

2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 413-422 ◽  
Author(s):  
Hitesh Kumar

An analytical study is performed to explore the flow and heat transfer characteristics of nanofluid (Al2O3-water and TiO3-water) over a linearly stretching porous sheet in the presence of radiation, ohmic heating, and viscous dissipation. Homotopy perturbed method is used and complete solution is presented, the results for the nanofluids velocity and temperature are obtained. The effects of various thermophysical parameters on the boundary-layer flow characteristics are displayed graphically and discussed quantitatively. The effect of viscous dissipation on the thermal boundary-layer is seen to be reverse after a fixed distance from the wall, which is very strange in nature and is the result of a reverse flow. The finding of this paper is unique and may be useful for future research on nanofluid.

2010 ◽  
Vol 37 (4) ◽  
pp. 263-287 ◽  
Author(s):  
Hemant Poonia ◽  
R.C. Chaudhary

An unsteady, two-dimensional, hydromagnetic, laminar mixed convective boundary layer flow of an incompressible and electrically-conducting fluid along an infinite vertical plate embedded in the porous medium with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer are discussed. The results show that increased cooling (Gr > 0) of the plate and the Eckert number leads to a rise in the velocity profile. Also, an increase in Eckert number leads to an increase in the temperature. Effects of Sc on velocity and concentration are discussed and shown graphically.


2007 ◽  
Vol 34 (2) ◽  
pp. 135-160 ◽  
Author(s):  
Ramachandra Prasad ◽  
Bhaskar Reddy

An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
C. J. Toki

The problem of boundary layer flow of an incompressible fluid over a moving porous flat plate is investigated, by taking into account the heat due to viscous dissipation. The governing boundary layer equations of this flow field were solved analytically using the Laplace transform technique. These new exact analytical solutions for velocity and temperature were obtained with arbitrary Prandtl number and dissipation parameter (or Eckert number Ec). The corresponding solutions for nonporous plate are discussed. Applying numerical values into the analytical expressions of the temperature and heat transfer coefficient, we also discussed the effects of the dissipation parameter in the cases of water, gas, and ammonia flow. We can finally deduce that the fluid temperature of the present problem will increase in the case of viscous dissipation with positive Ec, but this temperature will decrease with negative Ec.


2016 ◽  
Vol 9 (7) ◽  
pp. 2369-2377 ◽  
Author(s):  
Muhammad Khairul Anuar Mohamed ◽  
Nor Aida Zuraimi Noar ◽  
Mohd Zuki Salleh ◽  
Anuar Ishak ◽  
◽  
...  

2009 ◽  
Vol 13 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Pushkar Sharma ◽  
Gurminder Singh

Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.


Author(s):  
Yap Bing Kho ◽  
Rahimah Jusoh ◽  
Mohd Zuki Salleh ◽  
Muhammad Khairul Anuar Mohamed ◽  
Zulkhibri Ismail ◽  
...  

The effects of viscous dissipation on the boundary layer flow of hybrid nanofluids have been investigated. This study presents the mathematical modelling of steady two dimensional boundary layer flow of Cu-TiO2 hybrid nanofluid. In this research, the surface of the model is stretched and shrunk at the specific values of stretching/shrinking parameter. The governing partial differential equations of the hybrid nanofluid are reduced to the ordinary differential equations with the employment of the appropriate similarity transformations. Then, Matlab software is used to generate the numerical and graphical results by implementing the bvp4c function. Subsequently, dual solutions are acquired through the exact guessing values. It is observed that the second solution adhere to less stableness than first solution after performing the stability analysis test. The existence of viscous dissipation in this model is dramatically brought down the rate of heat transfer. Besides, the effects of the suction and nanoparticles concentration also have been highlighted. An increment in the suction parameter enhances the magnitude of the reduced skin friction coefficient while the augmentation of concentration of copper and titanium oxide nanoparticles show different modes.


Sign in / Sign up

Export Citation Format

Share Document