scholarly journals Numerical tracking of sorbent particles and distribution during gas desulfurization in pulverized coal-fired furnace

2017 ◽  
Vol 21 (suppl. 3) ◽  
pp. 759-769 ◽  
Author(s):  
Ivan Tomanovic ◽  
Srdjan Belosevic ◽  
Aleksandar Milicevic ◽  
Nenad Crnomarkovic ◽  
Dragan Tucakovic

Furnace sorbent injection for sulfur removal from flue gas presents a challenge, as the proper process optimization is of crucial importance in order to obtain both high sulfur removal rates and good sorbent utilization. In the simulations a two-phase gas-particle flow is considered. Pulverized coal and calcium-based sorbent particles motion is simulated inside of the boiler furnace. It is important to determine trajectories of particles in the furnace, in order to monitor the particles heat and concentration history. A two-way coupling of the phases is considered ? influence of the gas phase on the particles, and vice versa. Particle-to-particle collisions are neglected. Mutual influence of gas and dispersed phase is modeled by corresponding terms in the transport equations for gas phase and the equations describing the particles turbulent dispersion. Gas phase is modeled in Eulerian field, while the particles are tracked in Lagrangian field. Turbulence is modeled by the standard k-? model, with additional terms for turbulence modulation. Distribution, dispersion and residence time of sorbent particles in the furnace have a considerable influence on the desulfurization process. It was shown that, by proper organization of process, significant improvement considering emission reduction can be achieved.

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Mitianiec Wladyslaw

Combustion processes of two fuels, pulverized coal and biomass, in furnaces take place at steady state. Combustion of condensed fuels involves one-way interfacial flux due to phenomena in the condensed phase (evaporation or pyrolysis) and reciprocal ones (heterogeneous combustion and gasification). Many of the species injected in the gas phase are later involved in gas phase combustion. This paper presents results of combustion process of two-phase charge contained coal and wetted biomass, where the carrier was the air with given flow rate. The furnace has three inlets with assumed inlet flow rate of coal, biomass, and air, and combustion process takes place in the furnace fluidized space. The simulation of such combustion process was carried out by numerical code of open source computational fluid dynamics (CFD) program code_saturne. For both fuels, the moist biomass with following mass contents: C = 53%, H = 5.8%, O = 37.62%, ash = 3.6, and mean diameter of molecules equal to 0.0008 m and pulverized coal with following mass contents: C = 76.65%, H = 5.16%, O = 9.9%, ash = 6.21%, and mean molecule diameter 0.000025 m were used. Devolatilization process with kinetic reactions was taken into account. Distribution of the main combustion product in furnace space is presented with disappearance of the molecules of fuels. This paper presents theoretical description of the two-phase charge, specification of the thermodynamic state of the charge in inlet boundaries and furnace space, and thermal parameters of solid fuel molecules obtained from the open source postprocessor paraview.


Author(s):  
Mo Yang ◽  
Chunsun Guo ◽  
Yuwen Zhang ◽  
Zhangyang Kang

In this paper, a direct current (DC) anti-bias burner has been numerically simulated. This kind burner is combination of bias block and elbow bend and its bias block is located behind the bend. Effects of the bias block’s angle and location on coal distribution in the burner export are investigated. Euler-Lagrange approach is employed to study the gas-solid two-phase flow. The gas-phase is simulated using the RNG k-ε model and solid-phase is modeled using the discrete phase model (DPM). The results show that, installing a bias block behind the elbow can achieve a uniform distribution in outlet and the high concentrations region non-adherent. Relative to the location, the bias block angle changes is the main reason of generating resistance. When α = 25° L = 150mm, the distribution of pulverized coal of the burner outlet is the most uniform and the resistance is not large, which could satisfy the good anti-bias effect and moderate resistance loss at the same time.


2012 ◽  
Vol 9 (1) ◽  
pp. 131-135
Author(s):  
M.A. Pakhomov

The paper presents the results of modeling the dynamics of flow, friction and heat transfer in a descending gas-liquid flow in the pipe. The mathematical model is based on the use of the Eulerian description for both phases. The effect of a change in the degree of dispersion of the gas phase at the input, flow rate, initial liquid temperature and its friction and heat transfer rate in a two-phase flow. Addition of the gas phase causes an increase in heat transfer and friction on the wall, and these effects become more noticeable with increasing gas content and bubble diameter.


2001 ◽  
Vol 123 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Jun Ishimoto ◽  
Mamoru Oike ◽  
Kenjiro Kamijo

The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.


Author(s):  
Yu Wang ◽  
Qi He ◽  
Ming Liu ◽  
Weixiong Chen ◽  
Junjie Yan

In pulverized coal-fired plant, the U-type bend is commonly used in flue gas and pulverized coal pipe system to due to the constraints of outer space. And gas-solid two-phase flow exists in these pipelines. The erosion of the pipe has significant effect on the safety and reliability of pipelines. In present paper, the erosion characteristics of U-type bend were investigated through CFD (Computational Fluid Dynamics) method. The wear distribution on the pipe wall was obtained. And the particle flow characteristics in U-type bend were analyzed. The influence of inlet velocity, mass loading rate and particle size on the erosion rate was studied as well. Result suggested that the maximum erosion rate increases exponentially with the increase of inlet velocity. And maximum erosion rate increases linearly with the increasing mass loading rate. Increasing particle size can aggravate the wear on the pipe wall.


1993 ◽  
Vol 115 (4) ◽  
pp. 751-759 ◽  
Author(s):  
Tsuneaki Ishima ◽  
Koichi Hishida ◽  
Masanobu Maeda

A particle dispersion has been experimentally investigated in a two-dimensional mixing layer with a large relative velocity between particle and gas-phase in order to clarify the effect of particle residence time on particle dispersion. Spherical glass particles 42, 72, and 135 μm in diameter were loaded directly into the origin of the shear layer. Particle number density and the velocities of both particle and gas phase were measured by a laser Doppler velocimeter with modified signal processing for two-phase flow. The results confirmed that the characteristic time scale of the coherent eddy apparently became equivalent to a shorter characteristic time scale due to a less residence time. The particle dispersion coefficients were well correlated to the extended Stokes number defined as the ratio of the particle relaxation time to the substantial eddy characteristic time scale which was evaluated by taking account of the particle residence time.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750063 ◽  
Author(s):  
A. M. Hegab ◽  
S. A. Gutub ◽  
A. Balabel

This paper presents the development of an accurate and robust numerical modeling of instability of an interface separating two-phase system, such as liquid–gas and/or solid–gas systems. The instability of the interface can be refereed to the buoyancy and capillary effects in liquid–gas system. The governing unsteady Navier–Stokes along with the stress balance and kinematic conditions at the interface are solved separately in each fluid using the finite-volume approach for the liquid–gas system and the Hamilton–Jacobi equation for the solid–gas phase. The developed numerical model represents the surface and the body forces as boundary value conditions on the interface. The adapted approaches enable accurate modeling of fluid flows driven by either body or surface forces. The moving interface is tracked and captured using the level set function that initially defined for both fluids in the computational domain. To asses the developed numerical model and its versatility, a selection of different unsteady test cases including oscillation of a capillary wave, sloshing in a rectangular tank, the broken-dam problem involving different density fluids, simulation of air/water flow, and finally the moving interface between the solid and gas phases of solid rocket propellant combustion were examined. The latter case model allowed for the complete coupling between the gas-phase physics, the condensed-phase physics, and the unsteady nonuniform regression of either liquid or the propellant solid surfaces. The propagation of the unsteady nonplanar regression surface is described, using the Essentially-Non-Oscillatory (ENO) scheme with the aid of the level set strategy. The computational results demonstrate a remarkable capability of the developed numerical model to predict the dynamical characteristics of the liquid–gas and solid–gas flows, which is of great importance in many civilian and military industrial and engineering applications.


1960 ◽  
Vol 82 (3) ◽  
pp. 609-621 ◽  
Author(s):  
S. L. Soo ◽  
H. K. Ihrig ◽  
A. F. El Kouh

Experimental methods for the determination of certain statistical properties of turbulent conveyance and diffusion of solid particles in a gaseous state are presented. Methods include a tracer-diffusion technique for the determination of gas-phase turbulent motion and a photo-optical technique for the determination of motion of solid particles. Results are discussed and compared with previous analytical results.


Author(s):  
Wei Yao ◽  
Christophe Morel

In this paper, a multidimensional two-fluid model with additional turbulence k–ε equations is used to predict the two-phase parameters distribution in freon R12 boiling flow. The 3D module of the CATHARE code is used for numerical calculation. The DEBORA experiment has been chosen to evaluate our models. The radial profiles of the outlet parameters were measured by means of an optical probe. The comparison of the radial profiles of void fraction, liquid temperature, gas velocity and volumetric interfacial area at the end of the heated section shows that the multidimensional two-fluid model with proper constitutive relations can yield reasonably predicted results in boiling conditions. Sensitivity tests show that the turbulent dispersion force, which involves the void fraction gradient, plays an important role in determining the void fraction distribution; and the turbulence eddy viscosity is a significant factor to influence the liquid temperature distribution.


Sign in / Sign up

Export Citation Format

Share Document