scholarly journals Experiment and numerical simulation on transient heat transfer from SiC foam to airflow in a high temperature tube

2018 ◽  
Vol 22 (Suppl. 2) ◽  
pp. 597-606 ◽  
Author(s):  
Xinlin Xia ◽  
Xue Chen ◽  
Xiaolei Li ◽  
Liu Bo ◽  
Yafen Han

In order to understand the high temperature heat transfer behavior of ceramic foam to air-flow, experiment and numerical simulation have been conducted for a tube fully filled with SiC foam under several air-flow velocities. The tested sample of SiC foam is characterized by a porosity of 0.88 and 10 pores per inch, which is heated to 1000?C before the air-flow passes through. The transient temperature variation is recorded and discussed for several inlet air-flow velocities ( 2.9 m/s, 4.3 m/s and 5.8 m/s). Then, a computational model for the transient process is developed to nu- merically investigate the coupled radiative and convective heat transfer, and compared with the experimental data. The results show that the heat transfer reaches steady-state quickly and the time needed is less than 80 second. The transient devia- tion between the predicted and experimental data is less than 25.0%. Besides, it is found that there exists an obvious temperature difference between the fluid and solid phases, the maximum difference occurs at the neighbor region of tube wall and decreases as the inlet velocity increases at the steady-state.

2009 ◽  
Vol 37 (2) ◽  
pp. 103-121 ◽  
Author(s):  
K. Kato ◽  
M. Yamaguchi ◽  
T. Miyazono ◽  
M. Tsuruta

Abstract Rolling tire performance is frequently affected by multiple physics. For instance, dry handling is influenced by the tire temperature as a consequence of the heat generation by material viscosity and the heat transfer to ambient air. The general phenomenon is complex and even interactive in that the elasticity parameter affecting tire deformation is a function of the temperature and that the temperature depends considerably on the air flow on tire surface. This paper refers to connecting the different physics of outside air flow and thermomechanical system of tire. Especially, the heat transfer across tire surface is focused from the viewpoint of thermofluid dynamics. Macroscopic flow turbulence to accelerate the heat transfer is studied in a case study of the run-flat tire, where high temperature due to very large deformation is of a key issue. Numerical simulation is conducted in parallel to experimental works in assessing heat flow and temperature on the surface. It is shown that the proposed geometry of rib sidewall reduces the tire temperature and improves the tire life remarkably.


2015 ◽  
Vol 9 (3) ◽  
pp. 161-166
Author(s):  
Aneta Bohojło-Wiśniewska

Summary This paper presents an example of humid air flow around a single head of Chinese cabbage under conditions of complex heat transfer. This kind of numerical simulation allows us to create a heat and humidity transfer model between the Chinese cabbage and the flowing humid air. The calculations utilize the heat transfer model in porous medium, which includes the temperature difference between the solid (vegetable tissue) and fluid (air) phases of the porous medium. Modelling and calculations were performed in ANSYS Fluent 14.5 software.


Author(s):  
Jong-Shang Liu ◽  
Mark C. Morris ◽  
Malak F. Malak ◽  
Randall M. Mathison ◽  
Michael G. Dunn

In order to have higher power to weight ratio and higher efficiency gas turbine engines, turbine inlet temperatures continue to rise. State-of-the-art turbine inlet temperatures now exceed the turbine rotor material capability. Accordingly, one of the best methods to protect turbine airfoil surfaces is to use film cooling on the airfoil external surfaces. In general, sizable amounts of expensive cooling flow delivered from the core compressor are used to cool the high temperature surfaces. That sizable cooling flow, on the order of 20% of the compressor core flow, adversely impacts the overall engine performance and hence the engine power density. With better understanding of the cooling flow and accurate prediction of the heat transfer distribution on airfoil surfaces, heat transfer designers can have a more efficient design to reduce the cooling flow needed for high temperature components and improve turbine efficiency. This in turn lowers the overall specific fuel consumption (SFC) for the engine. Accurate prediction of rotor metal temperature is also critical for calculations of cyclic thermal stress, oxidation, and component life. The utilization of three-dimensional computational fluid dynamics (3D CFD) codes for turbomachinery aerodynamic design and analysis is now a routine practice in the gas turbine industry. The accurate heat-transfer and metal-temperature prediction capability of any CFD code, however, remains challenging. This difficulty is primarily due to the complex flow environment of the high-pressure turbine, which features high speed rotating flow, coupling of internal and external unsteady flows, and film-cooled, heat transfer enhancement schemes. In this study, conjugate heat transfer (CHT) simulations are performed on a high-pressure cooled turbine stage, and the heat flux results at mid span are compared to experimental data obtained at The Ohio State University Gas Turbine Laboratory (OSUGTL). Due to the large difference in time scales between fluid and solid, the fluid domain is simulated as steady state while the solid domain is simulated as transient in CHT simulation. This paper compares the unsteady and transient results of the heat flux on a high-pressure cooled turbine rotor with measurements obtained at OSUGTL.


1993 ◽  
Vol 115 (3) ◽  
pp. 621-630 ◽  
Author(s):  
G. F. Jones ◽  
J. Cai

We present a numerical study of transient natural convection in a rectangular open thermosyphon having asymmetric thermal boundary conditions. One vertical wall of the thermosyphon is either heated by constant heat flux (“warmup”) or cooled by convection to the surroundings (“cooldown”). The top of the thermosyphon is open to a large reservoir of fluid at constant temperature. The vorticity, energy, and stream-function equations are solved by finite differences on graded mesh. The ADI method and iteration with overrelaxation are used. We find that the thermosyphon performs quite differently during cooldown compared with warmup. In cooldown, flows are mainly confined to the thermosyphon with little momentum and heat exchange with the reservoir. For warmup, the circulation resembles that for a symmetrically heated thermosyphon where there is a large exchange with the reservoir. The difference is explained by the temperature distributions. For cooldown, the fluid becomes stratified and the resulting stability reduces motion. In contrast, the transient temperature for warmup does not become stratified but generally exhibits the behavior of a uniformly heated vertical plate. For cooldown and Ra > 104, time-dependent heat transfer is predicted by a closed-form expression for one-dimensional conduction, which shows that Nu → Bi1/2/A in the steady-state limit. For warmup, transient heat transfer behaves as one-dimensional conduction for early times and at steady state and for Ra* ≥ 105, can be approximated as that for a uniformly heated vertical plate.


Author(s):  
Chadia Haidar ◽  
Rachid Boutarfa ◽  
Mohamed Sennoune ◽  
Souad Harmand

This work focuses on the numerical and experimental study of convective heat transfer in a rotor of a discoidal the machine with an eccentric impinging jet. Convective heat transfers are determined experimentally in steady state on the surface of a single rotating disk. The experimental technique is based on the use of infrared thermography to access surface temperature measurement, and on the numerical resolution of the energy equation in steady-state, to evaluate local convective coefficients. The results from the numerical simulation are compared with heat transfer experiments for rotational Reynolds numbers between 2.38×105 and 5.44×105 and for the jet's Reynolds numbers ranging from 16.5×103 to 49.6 ×103. A good agreement between the two approaches was obtained in the case of a single rotating disk, which confirms us in the choice of our numerical model. On the other hand, a numerical study of the flow and convective heat transfer in the case of an unconfined rotor-stator system with an eccentric air jet impinging and for a dimensionless spacing G=0.02, was carried out. The results obtained revealed the presence of different heat transfer zones dominated either by rotation only, by the air flow only or by the dynamics of the rotation flow superimposed on that of the air flow. Critical radii on the rotor surface have been identified


2008 ◽  
Author(s):  
Esam M. Alawadhi

Natural convection flow in a cube with a heated strip is solved numerically. The heated strip is attached horizontally to the front wall and maintained at high temperature, while the entire opposite wall is maintained at low temperature. The heated strip simulates an array of electronic chips The Rayleigh numbers of 104, 105, and 106 are considered in the analysis and the heated strip is horizontally attached to the wall. The results indicate that the heat transfer strongly depends on the position of the heated strip. The maximum Nusselt number can be achieved if the heater is placed at the lower half of the vertical wall. Increasing the Rayleigh number significantly promotes heat transfer in the enclosure. Flow streamlines and temperature contours are presented, and the results are validated against published works.


Author(s):  
L. K. Liu ◽  
M. C. Wu ◽  
C. J. Fang ◽  
Y. H. Hung

A series of experimental investigations with stringent measurement methods on the studies related to mixed convection from the horizontally confined extended surfaces with a slot jet impingement have been successfully conducted. The relevant parameters influencing mixed convection performance due to jet impingement and buoyancy include the Grashof number, ratio of jet separation distance to nozzle width, ratio of extended surfaces height to nozzle width and jet Reynolds number. The range of these parameters studied are Grs = 3.77 × 105 – 1.84 × 106, H/W = 1–10, Hs/W = 0.74–3.40 and Re = 63–1383. In the study, the heat transfer behavior on the extended surfaces with confined slot jet impingement such as the temperature distribution, local and average Nusselt numbers on the extended surfaces has been systematically explored. The results manifest that the effect of steady-state Grashof number on heat transfer behavior such as stagnation, local and average Nusselt number is not significant; while the heat transfer performance increases with decreasing jet separation distance or with increasing extended surface height and jet Reynolds number. Besides, two new correlations of local and average Nusselt numbers in terms of H/W, Hs/W and Re are proposed for the cases of extended surfaces. A satisfactory agreement is achieved between the results predicted by these correlations and the experimental data. Finally, a complete composite correlation of steady-state average Nusselt number for mixed convection due to jet impingement and buoyancy is proposed. The comparison of the predictions evaluated by this correlation with all the present experimental data is made. The maximum and average deviations of the predictions from the experimental data are 7.46% and 2.87%, respectively.


Sign in / Sign up

Export Citation Format

Share Document