scholarly journals Enhanced heat transfer research in liquid-cooled channel based on piezoelectric vibrating cantilever

2020 ◽  
pp. 244-244
Author(s):  
Jiahong Fu ◽  
Yichen Chen ◽  
Zhang Yu ◽  
Xufang Zhang

In order to study the variation of vortices and heat transfer enhancement characteristics of piezoelectric vibrating cantilever in liquid-cooled channels, the effects of fluid density and viscosity, mainstream velocity and excitation voltage on vortices were analyzed. The theoretical and numerical simulation of piezoelectric vortices was carried out by using fluid-solid coupling method. On the basis of hydrodynamic function considering the additional effect of liquid viscosity and density on piezoelectric vibrator, the vortex structure of piezoelectric vibrator was analyzed by panel method free-wake model. It is found that the larger the density of the liquid, the smaller the vortex shedding strength and the radius of the core; the larger the viscosity of the liquid, the easier to fully develop the vortex generated by the excitation; the increase of the mainstream flow velocity is beneficial to the development of the vortex structure and the increase of the vorticity intensity; compared with the increase of the mainstream flow velocity, the excitation voltage is more conducive to the enhancement of the vorticity structure, then make it easier to mix hot and cold fluids, thus enhancing heat transfer.

Author(s):  
Tirivanhu Chinyoka ◽  
Daniel Oluwole Makinde

Purpose – The purpose of this paper is to examine the unsteady pressure-driven flow of a reactive third-grade non-Newtonian fluid in a channel filled with a porous medium. The flow is subjected to buoyancy, suction/injection asymmetrical and convective boundary conditions. Design/methodology/approach – The authors assume that exothermic chemical reactions take place within the flow system and that the asymmetric convective heat exchange with the ambient at the surfaces follow Newton’s law of cooling. The authors also assume unidirectional suction injection flow of uniform strength across the channel. The flow system is modeled via coupled non-linear partial differential equations derived from conservation laws of physics. The flow velocity and temperature are obtained by solving the governing equations numerically using semi-implicit finite difference methods. Findings – The authors present the results graphically and draw qualitative and quantitative observations and conclusions with respect to various parameters embedded in the problem. In particular the authors make observations regarding the effects of bouyancy, convective boundary conditions, suction/injection, non-Newtonian character and reaction strength on the flow velocity, temperature, wall shear stress and wall heat transfer. Originality/value – The combined fluid dynamical, porous media and heat transfer effects investigated in this paper have to the authors’ knowledge not been studied. Such fluid dynamical problems find important application in petroleum recovery.


2005 ◽  
Vol 19 (1) ◽  
pp. 101-105 ◽  
Author(s):  
S. Vemuri ◽  
K. J. Kim ◽  
A. Razani ◽  
T. W. Bell ◽  
B. D. Wood

Heat sinks or fins stand deployed for enhancing heat transfer. That’s why, planned experiments remain fortified for examining the impacts of SSF pin fin on thermal dispersal concerning constant thermal value 6 W/cm2 . For that five chromel-alumel thermocouples are preferred, above and beyond, SSF pin fins materials of stainless steel and aluminum. As anticipated, for both the stated SSF pin fins, temperature declines for increasing length scale. Besides, both results are comparable with each other. However, temperature distributions over SSF aluminum pin fin declines relatively at faster rate comparable to that over SSF stainless steel pin fin. Obviously, it may be owing to higher thermal conductivity of SSF aluminum pin fin. Therefore, it carries superior, pleasant and momentous thermal performances.


2015 ◽  
Vol 723 ◽  
pp. 992-995
Author(s):  
Biao Li ◽  
Fu Guo Tong ◽  
Chang Liu ◽  
Nian Nian Xi

The surface convective heat transfer of mass concrete is an important element of concrete structure temperature effect analysis. Based on coupled Thermal Fluid governing differential equation and finite element method, the paper calculated and analyzed the dependence of the concrete surface convective heat transfer on the air flow velocity and the concrete thermal conductivity coefficient. Results show that the surface convective heat transfer coefficient of concrete is a quadratic polynomial function of the air flow velocity, but influenced much less by the air flow velocity when temperature gradient is dominating in heat transfer. The concrete surface convective heat transfer coefficient increases linearly with the thermal conductivity of concrete increases.


Sign in / Sign up

Export Citation Format

Share Document