scholarly journals Assessment of predictive models for the estimation of heat consumption in kindergartens

2021 ◽  
pp. 84-84
Author(s):  
Nebojsa Jurisevic ◽  
Dusan Gordic ◽  
Arso Vukicevic

The service sector remains the only economic sector that has recorded an increase (3.8%) in energy consumption during the last decade, and it is projected to grow more than 50% in the following decades. Among the public buildings, educational are especially important since they have high abundance, great retrofit potential in terms of energy savings and impact in promoting a culture of energy efficiency. Since predictive models have shown high potential in optimizing usage of energy in buildings, this study aimed to assess their application for both finding the most influential factors on heat consumption in public kindergarten and heat consumption prediction. Two linear (Simple and Multiple Linear Regression) and two non-linear (Decision Tree and Artificial Neural Network) predictive models were utilized to estimate monthly heat consumption in 11 public kindergartens in the city of Kragujevac, Serbia. Top-performing and most complex to develop was the Artificial Neural Network predictive model. Contrary to that, Simple Linear Regression was the least precise but the most simple to develop. It was found that Multiple Linear Regression and Decision Tree were relatively simple to develop and interpret, where in particular the Multiple Linear Regression provided relatively satisfying results with a good balance of precision and usability. It was concluded that the selection of proper predictive methods depends on data availability, and technical abilities of those who utilize and create them, often offering the choice between simplicity and precision.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Charles Gbenga Williams ◽  
Oluwapelumi O. Ojuri

AbstractAs a result of heterogeneity nature of soils and variation in its hydraulic conductivity over several orders of magnitude for various soil types from fine-grained to coarse-grained soils, predictive methods to estimate hydraulic conductivity of soils from properties considered more easily obtainable have now been given an appropriate consideration. This study evaluates the performance of artificial neural network (ANN) being one of the popular computational intelligence techniques in predicting hydraulic conductivity of wide range of soil types and compared with the traditional multiple linear regression (MLR). ANN and MLR models were developed using six input variables. Results revealed that only three input variables were statistically significant in MLR model development. Performance evaluations of the developed models using determination coefficient and mean square error show that the prediction capability of ANN is far better than MLR. In addition, comparative study with available existing models shows that the developed ANN and MLR in this study performed relatively better.


2019 ◽  
Vol 20 (3) ◽  
pp. 800-808
Author(s):  
G. T. Patle ◽  
M. Chettri ◽  
D. Jhajharia

Abstract Accurate estimation of evaporation from agricultural fields and water bodies is needed for the efficient utilisation and management of water resources at the watershed and regional scale. In this study, multiple linear regression (MLR) and artificial neural network (ANN) techniques are used for the estimation of monthly pan evaporation. The modelling approach includes the various combination of six measured climate parameters consisting of maximum and minimum air temperature, maximum and minimum relative humidity, sunshine hours and wind speed of two stations, namely Gangtok in Sikkim and Imphal in the Manipur states of the northeast hill region of India. Average monthly evaporation varies from 0.62 to 2.68 mm/day for Gangtok, whereas it varies from 1.4 to 4.3 mm/day for Imphal during January and June, respectively. Performance of the developed MLR and ANN models was compared using statistical indices such as coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) with measured pan evaporation values. Correlation analysis revealed that temperature, wind speed and sunshine hour had positive correlation, whereas relative humidity had a negative correlation with pan evaporation. Results showed a slightly better performance of the ANN models over the MLR models for the prediction of monthly pan evaporation in the study area.


Sign in / Sign up

Export Citation Format

Share Document