scholarly journals Numerical simulation of heat dissipation of surface mounted permanent magnet synchronous hub motor

2021 ◽  
Vol 25 (6 Part A) ◽  
pp. 4059-4066
Author(s):  
Shuai Leng ◽  
Liqiang Jin

Due to the insulation aging, demagnetization and other problems of the permanent magnet and insulating material in the permanent magnet synchronous hub motor under high temperature, the numerical simulation of the heat dissipation of surface mounted permanent magnet synchronous hub motor is proposed. According to the heat transfer of hub motor, the effect degree of heat conduction, heat convection and heat radiation is obtained, the heat transfer coefficient of each part is calculated, and the influence of motor insulation material on temperature rise is analyzed. The experimental results show that the heat dissipation of hub motor under natural cooling condition is poor, and the internal oil cooling method can effectively improve the heat dissipation of hub motor and reduce the temperature difference. When operating at high speed, this reduces the potential safety hazard.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4020
Author(s):  
Peng Sun ◽  
Yiping Lu ◽  
Jianfei Tong ◽  
Youlian Lu ◽  
Tianjiao Liang ◽  
...  

In order to provide a theoretical basis for the thermal design of the neutron production target, flow and heat transfer characteristics are studied by using numerical simulations and experiments. A rectangular mini-channel experimental model consistent with the geometric shape of the heat dissipation structure of neutron production target was established, in which the aspect ratio and gap thickness of the test channel were 53.8:1 and 1.3 mm, respectively. The experimental results indicate that the critical Re of the mini-channel is between 3500 and 4000, and when Re reaches 21,000, Nu can reach 160. The simulation results are in good agreement with the experimental data, and the numerical simulation method can be used for the variable structure optimization design of the target in the later stage. The relationship between the flow pressure drop of the target mini-channel and the aspect ratio and Re is obtained by numerical simulation. The maximum deviation between the correlation and the experimental value is 6%.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zhengyu Xie ◽  
Limin Jia ◽  
Yong Qin ◽  
Li Wang

With the rapid development of high-speed railway in China, high-speed railway transport hub (HRTH) has become the high-density distribution center of passenger flow. In order to accurately detect potential safety hazard hidden in passenger flow, it is necessary to forecast the status of passenger flow. In this paper, we proposed a hybrid temporal-spatio forecasting approach to obtain the passenger flow status in HRTH. The approach combined temporal forecasting based on radial basis function neural network (RBF NN) and spatio forecasting based on spatial correlation degree. Computational experiments on actual passenger flow status from a specific bottleneck position and its correlation points in HRTH showed that the proposed approach is effective to forecast the passenger flow status with high precision.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 4
Author(s):  
Ping-Hei Chen ◽  
Hyung Cho

Innovative and high-end techniques have been recently developed in academic institutes and are gradually being employed in our daily lives for improving living quality, namely, artificial intelligence (AI) technology, autonomous cars, hyper-loop for high-speed transportation, miniaturization of electronic devices, heat dissipation from cooling films to outer space, and so on [...]


Author(s):  
Ryan P. Anderson ◽  
Alfonso Ortega

Understanding the transport mechanisms involved in a single droplet impinging on a heated surface is imperative to the complete understanding of droplet and spray cooling. Evidence in the literature suggests that gas assisted sprays and mist flows are more efficient than sprays consisting only of liquid droplets. There has been few if any fundamental studies on gas-assisted droplets or spray cooling, in which a carrier gas or vapor stream propels the droplet to the target surface. The current work extends previous studies of a droplet impinging on a heated surface conducted by the same group from the single phase regime into the evaporative regime. For both regimes, understanding the transport physics due to the heat transfer from the heated surface to the droplet and then by convection and evaporation to the airflow is of fundamental importance. High-speed photography was used to capture the spreading process and yielded results that correlated well with previously published isothermal and single-phase results. The heat transfer was measured with a fitting approach by which the instantaneous temperature profile was matched to an analytic solution to determine the instantaneous value of the centerline heat transfer coefficient. A very large increase in the heat dissipation was observed when compared to previously published single-phase results. Heat transfer was optimized at Reynolds numbers that produced an optimally thin liquid film and high heat and mass transfer coefficients on the surface of the film.


Author(s):  
Tengfei Ma ◽  
Wen Wang

Abstract The effects of inclined angle on the heat transfer of radiators under natural convection are analyzed with experiment and numerical simulation, there are three radiators with straight fin, oblique fin and pin fin respectively (based on 150 × 150 × 45mm). The numerical simulation could agree with the experiment. The straight fin radiator could provide the best heat dissipation performance under experimental conditions and normal installation angle. The pin fin radiator has the largest heat transfer coefficient, around 7 W/m2·K. The influence of deflection angle is discussed on the heat dissipation capability of the radiator. The heat dissipation of the pin fin radiator is less sensitive to the gravity direction than the straight fin and oblique fin ones.


2013 ◽  
Vol 347-350 ◽  
pp. 1127-1131
Author(s):  
Xiang Tai ◽  
Tao Fan

In the field of electric vehicles, the high power density demand for the permanent magnet synchronous motor (PMSM) has made the thermal management a great challenge, especially the end winding. For enhance the heat dissipation for end winding, Aluminum Nitride (AlN) potting compound is introduced. Numerical simulation is performed in this paper to evaluation the effect of usage of potting compound. A prototype motor is built up with the end winding filling with the proposed potting material. Experiment shows that the heat dissipation has improved compared with the baseline motor.


2011 ◽  
Vol 402 ◽  
pp. 390-396
Author(s):  
Dong Hu ◽  
Jing Yao Wang ◽  
Li Jie Li ◽  
Shao Jun Chu

Based on the principle of heat transfer, a monitoring software package about identifying erosion profile of submerged arc furnace with “freeze” lining is developed by VC++. Reliability of traditional lining without monitoring system and “freeze” lining with monitoring software are evaluated by Fuzzy FMECA Method. There is a conclusion can be draw that the hazard rating of submerged arc furnace with traditional lining is 2.9094.This value of “freeze” lining is 2.1087.The result indicates that adopting the “freeze” lining with monitoring software can drop the potential safety hazard effectively and reduce casualties.


Author(s):  
Kailun Chen ◽  
Changqi Yan ◽  
Cable Kurwitz ◽  
Kun Cheng ◽  
Haozhi Bian

This research presents results from experimental investigations on helix-finned surface fabricated by a 3D printing technique to evaluate boiling heat transfer performance. The experiments were conducted in saturated water at atmospheric pressure. To the author’s knowledge, this is the first attempt that helical pin fins are employed in thermal management. The boiling curve of the enhanced surface was characterized by a much lower wall superheat at the same heat flux compared with plain surfaces. High-speed visualization was used to display instantaneous bubble behaviors such as the bubble departure frequency, which was obtained from analyzed images. It was observed that the helix-finned surface had higher bubble departure frequencies compared to plain surfaces and an earlier onset of nucleate boiling was noticed. It is concluded that the surface roughness and micron level cavities produced by the 3D printing technique on the helix surface are key factors to enhance boiling heat transfer. With the experience gained, dimension optimization of helical structure should be studied further to meet the needs of increased heat dissipation rate.


Sign in / Sign up

Export Citation Format

Share Document