scholarly journals Variability of leaf characteristics in different pedunculate oak genotypes (Ouercus robur L)

2006 ◽  
pp. 95-105 ◽  
Author(s):  
Natasa Nikolic ◽  
Borivoj Krstic ◽  
Slobodanka Pajevic ◽  
Sasa Orlovic

The objective of this study was to determine genotype influences on pedunculate oak's leaf traits: leaf area, specific leaf area (leaf area per unit of leaf mass), concentration of photosynthetic pigments, rates of photosynthesis and respiration, and nutrient concentrations (nitrogen phosphorus, potassium, calcium, and sodium). Leaf samples were taken from seventeen Q. robur genotypes originating from clonal seed orchard Banov Brod (Srem, Vojvodina, Serbia). Leaf area of the studied genotypes ranged from 248.4 to 628.8 cm2, SLA from 109.4 to 160.7 cm2 dry matter-1, rates of photosynthesis and respiration from 6.98 to 20.32 and from 6.73 to 14.65 ?mol O2 m-2 s-1, respectively. The leaves of genotype 35 contained the highest concentration of photosynthetic pigments, while the lowest were recorded in genotype 29. The following pattern of nutrient concentrations was obtained for the studied genotypes: N>Ca>K>P>Na. Genotype variability of P K, Ca, and Na concentrations was more pronounced when compared with nitrogen. Estimated quantitative differences are the consequence of interaction of certain genotype and common environmental conditions for all trees. These results will provide information on intraspecific variation of the studied leaf characteristics.

2018 ◽  
Vol 142 (3-4) ◽  
pp. 148-148
Author(s):  
Ivan Andrić ◽  
Davorin Kajba ◽  
Valentino Pintar ◽  
Anamarija Jazbec

Biološki mehanizam listanja pod izravnim je utjecajem okolišnih čimbenika. Razvijeni su mnogi modeli i objavljene različite studije s ciljem što boljeg opisa pojedinog biološkog mehanizma fenoloških svojstava, a koji su izloženi upravo okolišnim čimbenicima tijekom svoga života. Temperatura je neminovno jedan od najbitnijih čimbenika za pokretanje mnogih procesa u biljci i upravo je ona okosnica većine izrađenih modela. Growing Degree Days model se temelji na minimalnim i maksimalnim temperaturama, te na baznoj temperaturi, odosno temperaturnom pragu iznad kojeg se aktiviraju procesi u biljci. Istraživanja u ovome radu temelje se na desetogodišnjem monitoringu početka listanja hrasta lužnjaka u klonskoj sjemenskoj plantaži koja sadrži ukupno 53 genotipa. Cilj je bio utvrditi ponašanje svojstva listanja te implementirati dobivene rezultate u GDD model. S obzirom da je već poznato da hrast lužnjak ima svoje tri fenološke forme listanja (rane, intermedijarne i kasne), bilo je potrebno dokazati da se te tri grupe jasno diferenciraju i po temperaturnim sumama, odnosno GDD-u. Razdoblje monitoringa u svakoj godini bilo je oko 130/131 dan, odnosno od 1.siječnja do 10.svibnja. Izračunom GDD-a i povezivanjem tog modela s dobivenim vrijednostima početka listanja, iskazala se jasna segregacija na već spomenute tri forme. Svakoj fenološkoj grupi, dodijeljen je interval vrijednosti temperaturnih suma koje su potrebne da bi ta fenološka forma započela s listanjem. S obzirom na godišnje vrijednosti temperaturnih suma koje su potrebne pojedinoj formi da krene s listanjem, evidentno je bilo da vrijednosti značajno variraju kroz godine, i to za kompletno promatrano razdoblje. Upravo to variranje onemogućava da se putem GDD modela izradi simulacijski model, koji bi mogao, uz određena manja odstupanja, predvidjeti početak listanja za iduće razdoblje. Važnost predviđanja nije jednostrana, naprotiv, cijeli je niz sinergijskih čimbenika koji su izravno ili neizravno vezani za početak listanja pojedinih vrsta šumskog drveća, među kojima možemo spomenuti stadijni razvoj entomofagnih i fitopatogenih štetnika, koji su svojom biologijom usko vezani za biologiju određene vrste drveća. S obzirom na izraženo variranje vrijednosti temperaturnih suma, po fenološkim formama, u istraživanja su uključeni i drugi okolišni čimbenici, kao što su količina oborina (mm), insolacija i broj dana. Cilj je bio ispitati kako se ova tri čimbenika ponašaju s obzirom na kretanje GDD vrijednosti, odnosno koji od ispitivanih čimbenika je preciznija poveznica za svojstvo početka listanja. Statističkom obradom podataka, jasno su i s visokim postotkom isključeni količina oborina i broj dana kao čimbenici koji definitivno ne utječu ili utječu s jako malim učešćem na kretanje vrijednosti GDD-a. Insolacija se iskazala kao čimbenik koji s najvećim udjelom sudjeluje u kretanju GDD vrijednosti i to za ranu fenološku formu sa 74,1 %, za intermedijarnu formu sa 90,6 %, te za fenološku formu kasnog listanja sa 78,7 %.


2014 ◽  
Vol 11 (24) ◽  
pp. 7331-7347 ◽  
Author(s):  
K. J. Bloomfield ◽  
T. F. Domingues ◽  
G. Saiz ◽  
M. I. Bird ◽  
D. M. Crayn ◽  
...  

Abstract. Forest and savanna are the two dominant vegetation types of the tropical regions with very few tree species common to both. At a broad scale, it has long been recognised that the distributions of these two biomes are principally governed by precipitation and its seasonality, but with soil physical and chemical properties also potentially important. For tree species drawn from a range of forest and savanna sites in tropical Far North Queensland, Australia, we compared leaf traits of photosynthetic capacity, structure and nutrient concentrations. Area-based photosynthetic capacity was higher for the savanna species with a steeper slope to the photosynthesis ↔ nitrogen (N) relationship compared with the forest group. Higher leaf mass per unit leaf area for the savanna trees derived from denser rather than thicker leaves and did not appear to restrict rates of light-saturated photosynthesis when expressed on either an area or mass basis. Median ratios of foliar N to phosphorus (P) were relatively high (>20) at all sites, but we found no evidence for a dominant P limitation of photosynthesis for either forest or savanna trees. A parsimonious mixed-effects model of area-based photosynthetic capacity retained vegetation type and both N and P as explanatory terms. Resulting model-fitted predictions suggested a good fit to the observed data (R2 = 0.82). The model's random component found variation in area-based photosynthetic response to be much greater among species (71% of response variance) than across sites (9%). These results suggest that, on a leaf-area basis, savanna trees of Far North Queensland, Australia, are capable of photosynthetically outperforming forest species at their common boundaries.


Author(s):  
Natasa Nikolic ◽  
Ljiljana Merkulov ◽  
Borivoj Krstic ◽  
Sasa Orlovic

The objective of this study was to determine genotype variability of leaf trichome and stoma characteristics. Leaves were sampled from seventeen pedunculate oak (Quercus robur L) genotypes originating from clonal seed orchard Banov Brod (Srem, the Vojvodina Province). The pedunculate oak has hypostomatal leaves. Statistically significant differences were found for the dimensions and density of stomata. Genotype variability of stomatal dimensions was less pronounced in comparison with their density (CV = 8.88%). Stomata number ranged from 530 to 791 per mm2 of leaf area; genotypes 18 and 25 could be distinguished from the others for the highest stomata number per leaf unit area, genotype 35 for the lowest number. In all genotypes, only solitary eglandular trichomes were observed on the adaxial leaf surface while both solitary eglandular and uniseriate glandular hairs were present on the abaxial surface. Single glandular trichomes were observed in all genotypes, while some of them were characterized by the presence of two (genotypes 4, 5, 6, 16, 22, 25, 28, 29, 30, 35, 38, 40, and 85) or three (genotypes 16, 25, 35) hairs joined by their basal cells.


2014 ◽  
Vol 11 (6) ◽  
pp. 8969-9011 ◽  
Author(s):  
K. J. Bloomfield ◽  
T. F. Domingues ◽  
G. Saiz ◽  
M. I. Bird ◽  
D. M. Crayn ◽  
...  

Abstract. Forest and savanna are the two dominant vegetation types of the tropical regions with very few tree species common to both. Aside from precipitation patterns, boundaries between these two vegetation types are strongly determined by soil characteristics and nutrient availability. For tree species drawn from a range of forest and savanna sites in tropical far north Queensland, Australia, we compared leaf traits of photosynthetic capacity, structure and nutrient concentrations. Area-based photosynthetic capacity was higher for the savanna species with a steeper slope to the photosynthesis ↔ Nitrogen relationship compared with the forest group. Higher leaf mass per unit leaf area for the savanna trees derived from denser rather than thicker leaves and did not appear to restrict rates of light-saturated photosynthesis when expressed on either an area- or mass-basis. Median ratios of foliar N to phosphorus were above 20 at all sites, but we found no evidence for a dominant P-limitation of photosynthesis for the forest group. A parsimonious mixed-effects model of area-based photosynthetic capacity retained vegetation type and both N and P as explanatory terms. Resulting model-fitted predictions suggested a good fit to the observed data (R2 = 0.82). The model's random component found variation in area-based photosynthetic response to be much greater among species (71% of response variance) than across sites (9%). These results suggest that in leaf area-based photosynthetic terms, savanna trees of far north Queensland, Australia are capable of out-performing forest species at their common boundaries1. 1 Adopted symbols and abbreviations are defined in Table 5.


2021 ◽  
Vol 13 (13) ◽  
pp. 7355
Author(s):  
Shivendra Kumar ◽  
Ramdeo Seepaul ◽  
Ian M. Small ◽  
Sheeja George ◽  
George Kelly O’Brien ◽  
...  

Brassica carinata (carinata) has emerged as a potential biofuel source due to its high erucic acid content, making it desirable for various industrial applications. Nitrogen (N) and sulfur (S) are required as primary sources of nutrition for growth and development in different oilseed crops and their utilization is interdependent. The purpose of the study was to analyze the interactive effect of N and S nutrition on the growth and other physiological activities of carinata and B. napus (napus). Four treatments, i.e., optimum NS (+N+S, 100% N and 100% S); N limited (−N+S, 0% N, 100% S); S limited (+N−S, 100% N, 0% S), and NS limited (−N−S, 0% N and 0% S) of N and S in full-strength Hoagland solution were imposed in the current study. Effect of different NS treatments was observed on vegetative traits such as number of primary and secondary branches, total leaf area, total biomass production and allocation, and physiological traits such as production of photosynthetic pigments, net photosynthesis, electron transport, and other aspects for both carinata and napus. The traits of stem elongation, number of nodes, node addition rate, internode length, number of primary and secondary branches were 60%, 36%, 50%, 35%, 56%, and 83% lower, respectively, in napus in comparison to carinata. Different NS treatments also positively influenced the production of photosynthetic pigments such as chlorophyll (Chl) a and b and carotenoids in carinata and napus. The concentration of Chla was 11% higher in napus in comparison to carinata. The rate of net photosynthesis, electron transport, and fluorescence was 12%, 8%, and 5% higher based on overall value, respectively, in napus compared to carinata. On the other hand, the overall value for stomatal conductance decreased by 5% in napus when compared to carinata. Different growth-related traits such as vegetative (plant height, node number, internode length, leaf area, number of primary and secondary branches), reproductive (pod number, pod length, seeds per pod), and photosynthetic capacity in oilseed brassicas are correlated with the final seed and oil yield and chemical composition which are of economic importance for the adoption of the crop. Thus, the analysis of these traits will help to determine the effect of NS interaction on crop productivity of carinata and napus.


ISRN Forestry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Edward Missanjo ◽  
Gift Kamanga-Thole ◽  
Vidah Manda

Genetic and phenotypic parameters for height, diameter at breast height (dbh), and volume were estimated for Pinus kesiya Royle ex Gordon clonal seed orchard in Malawi using an ASReml program, fitting an individual tree model. The data were from 88 clones assessed at 18, 23, 30, 35, and 40 years of age. Heritability estimates for height, dbh, and volume were moderate to high ranging from 0.19 to 0.54, from 0.14 to 0.53, and from 0.20 to 0.59, respectively, suggesting a strong genetic control of the traits at the individual level, among families, and within families. The genetic and phenotypic correlations between the growth traits were significantly high and ranged from 0.69 to 0.97 and from 0.60 to 0.95, respectively. This suggests the possibility of indirect selection in trait with direct selection in another trait. The predicted genetic gains showed that the optimal rotational age of the Pinus kesiya clonal seed orchard is 30 years; therefore, it is recommended to establish a new Pinus kesiya clonal seed orchard. However, selective harvest of clones with high breeding values in the old seed orchard should be considered so that the best parents in the old orchard can continue to contribute until the new orchard is well established.


2006 ◽  
Vol 36 (4) ◽  
pp. 1054-1058 ◽  
Author(s):  
O K Hansen ◽  
E D Kjær

A paternity analysis using five microsatellite markers was conducted in a Danish clonal seed orchard with 13 Abies nordmanniana (Stev.) Spach clones. The purpose was to investigate potential seed-orchard dysfunctions, with special emphasis on nonequal pollen contributions and selfing. Male paternity was found for 232 seedlings germinated from seeds collected on three ramets, each of eight clones, and the relative contribution of each clone to the gene pool of male gametes was calculated. Furthermore, 49 ramets were genotyped to check for erroneous grafting. The effect of an unbalanced male contribution was quantified by means of two measures: (1) the status number (NS), which reflects buildup of coancestry in the seed-orchard crop as a result of a low number of clones and an unequal male contribution, and (2) the asymptotic variance effective population number (Ne(v)). The contributions by pollen donors from the 13 clones were highly skewed. Three clones were fathers to more than 75% of the progenies, while making up only 24% of the ramets in the seed orchard. Four clones sired no progenies at all. The unequal contribution on the male side corresponded to NS = 4.2 and Ne(v) = 5.8. Some selfing was observed, which may give rise to concern if clonal seed orchards with few clones are established. The estimated maximum pollen contamination from outside the seed orchard was 4.3%. No grafting–labelling errors were identified.


2002 ◽  
Vol 27 (2) ◽  
pp. 141-150 ◽  
Author(s):  
RUI G. CARNEIRO ◽  
PAULO MAZZAFERA ◽  
LUIZ CARLOS C.B. FERRAZ ◽  
TAKASHI MURAOKA ◽  
PAULO CESAR O. TRIVELIN

Two soybean (Glycine max) cultivars were used in this study, Ocepar 4, rated as moderately resistant to Meloidogyne incognita race 3 but susceptible to M. javanica, and 'BR 16', susceptible to both nematodes. The effect of nematodes infection on the uptake and transport of N, P and Ca to the shoot was studied in plants growing in a split root system. The upper half was inoculated with 0, 3,000, 9,000 or 27,000 eggs/plant while the lower half received 15N, 32P or 45Ca. Infected plants showed an increase of root but a decrease of shoot mass with increasing inoculum levels. In general, total endogenous nutrients increased in the roots and tended to decrease in the shoots with increasing inoculum levels. When concentrations were calculated, there was an increase in the three nutrients in the roots, and an increase of Ca but no significant variation of N and P was observed in the shoots. The total amount of 15N in the roots increased at the highest inoculum levels but 32P and 45Ca decreased. In the shoots there was a reduction of 32P and 45Ca. The specific concentrations of the labelled nutrients (abundance or radioactivity/tissue mass) also showed a decrease of 32P and 45Ca in the shoots and roots of infected plants and an increase of 15N in the shoots. Considering that overall nutrient concentrations reflect cumulative nutrient uptake and the data from labelled elements gave information at a specific moment of the infection, thus nematodes do interfere with nutrient uptake and translocation.


2010 ◽  
Vol 67 (6) ◽  
pp. 624-632 ◽  
Author(s):  
Keila Rego Mendes ◽  
Ricardo Antonio Marenco

Global climate models predict changes on the length of the dry season in the Amazon which may affect tree physiology. The aims of this work were to determine the effect of the rainfall regime and fraction of sky visible (FSV) at the forest understory on leaf traits and gas exchange of ten rainforest tree species in the Central Amazon, Brazil. We also examined the relationship between specific leaf area (SLA), leaf thickness (LT), and leaf nitrogen content on photosynthetic parameters. Data were collected in January (rainy season) and August (dry season) of 2008. A diurnal pattern was observed for light saturated photosynthesis (Amax) and stomatal conductance (g s), and irrespective of species, Amax was lower in the dry season. However, no effect of the rainfall regime was observed on g s nor on the photosynthetic capacity (Apot, measured at saturating [CO2]). Apot and leaf thickness increased with FSV, the converse was true for the FSV-SLA relationship. Also, a positive relationship was observed between Apot per unit leaf area and leaf nitrogen content, and between Apot per unit mass and SLA. Although the rainfall regime only slightly affects soil moisture, photosynthetic traits seem to be responsive to rainfall-related environmental factors, which eventually lead to an effect on Amax. Finally, we report that little variation in FSV seems to affect leaf physiology (Apot) and leaf anatomy (leaf thickness).


Sign in / Sign up

Export Citation Format

Share Document