scholarly journals Metabolic activity of gut microbiota and xenobiotics

Author(s):  
Gordana Bojic ◽  
Svetlana Golocorbin-Kohn ◽  
Maja Stojancevic ◽  
Momir Mikov ◽  
Ljiljana Suvajdzic

The intestine habitat is the natural collection of symbiotic microorganisms. The bacterial population enables many permanent metabolic activities in this environment. Inside the intestine of mammals there are an extended genome of millions of bacterial genes named microbiome. In recent years, there has been an increased interest of scientists to discover the place and the role of bio-ecological content and modulation of gut microbiota in a host organism using prebiotics, probiotics and synbiotics, which may have a great benefit for human health.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guojun Wu ◽  
Naisi Zhao ◽  
Chenhong Zhang ◽  
Yan Y. Lam ◽  
Liping Zhao

AbstractTo demonstrate the causative role of gut microbiome in human health and diseases, we first need to identify, via next-generation sequencing, potentially important functional members associated with specific health outcomes and disease phenotypes. However, due to the strain-level genetic complexity of the gut microbiota, microbiome datasets are highly dimensional and highly sparse in nature, making it challenging to identify putative causative agents of a particular disease phenotype. Members of an ecosystem seldomly live independently from each other. Instead, they develop local interactions and form inter-member organizations to influence the ecosystem’s higher-level patterns and functions. In the ecological study of macro-organisms, members are defined as belonging to the same “guild” if they exploit the same class of resources in a similar way or work together as a coherent functional group. Translating the concept of “guild” to the study of gut microbiota, we redefine guild as a group of bacteria that show consistent co-abundant behavior and likely to work together to contribute to the same ecological function. In this opinion article, we discuss how to use guilds as the aggregation unit to reduce dimensionality and sparsity in microbiome-wide association studies for identifying candidate gut bacteria that may causatively contribute to human health and diseases.


2021 ◽  
Author(s):  
Amishi Bhatt ◽  
Dhyey Kothari ◽  
Charmy Kothari ◽  
Ramesh Kothari

Most of our gut microbiota live with us in a mutually beneficial life-long relationship. The gut microbiota plays a vital role in the host’s overall health through its metabolic activities. Human microbiota might be supported by consuming friendly bacteria (probiotics) and consuming foods to improve the microbiota (prebiotics). During the last two decades, probiotics’ interest has increased with rising scientific shreds of evidence of benefits on human health. Hence, they have been exploited as various food products, mainly fermented foods. Probiotics as a treatment modality may restore normal microbiota and functioning of the gastrointestinal (GI) tract. Strong scientific evidence is associating these bacteria with the prevention and therapy of various GI disorders. (In light of the ongoing trend of probiotics, further research is needed to obtain the perspective of potential applications for better health. Probiotic applications have been extended from health applications to food and agricultural applications. The benefits of probiotics led to its applications in probiotic ‘health food’ industries and agricultural sectors.


2020 ◽  
Vol 8 (3) ◽  
pp. 206-214
Author(s):  
Xiaoli Zhang ◽  
Zui Pan

Abstract Gastric and esophageal cancers are multifactorial and multistage-involved malignancy. While the impact of gut microbiota on overall human health and diseases has been well documented, the influence of gastric and esophageal microbiota on gastric and esophageal cancers remains unclear. This review will discuss the reported alteration in the composition of gastric and esophageal microbiota in normal and disease conditions, and the potential role of dysbiosis in carcinogenesis and tumorigenesis. This review will also discuss how dysbiosis stimulates local and systemic immunity, which may impact on the immunotherapy for cancer.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Mia C. Theilmann ◽  
Yong Jun Goh ◽  
Kristian Fog Nielsen ◽  
Todd R. Klaenhammer ◽  
Rodolphe Barrangou ◽  
...  

ABSTRACT Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus. These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. IMPORTANCE Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota. IMPORTANCE Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota.


2019 ◽  
Vol 10 (2) ◽  
pp. 99-114
Author(s):  
Mihaela Jurdana ◽  
Darja Barlič-Maganja

Gut microbiota is the name given today to the bacterial population living in our intestine. It provides nutrients, metabolites and affects the immune system. Recent animals and human studies suggest that regular physical activity increases the presence of beneficial microbial species of gut microbiota and improves the health status of the host. When gut bacteria diversity reduces, there are systemic consequences leading to gastrointestinal, physiological and psychological distress. This review describes the communication pathway of the microbiota-gut-brain axes and other possible mechanisms by which physical activity causes changes in microbiota composition. Furthermore, it provides the latest evidence of the beneficial role of exercise, which in turn can affect health and various disease processes. The results of research studies in this area are increasingly becoming a focus of scientific attention.


2019 ◽  
Vol 32 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Maged M. Saad ◽  
Sophie Michalet ◽  
Romain Fossou ◽  
Marina Putnik‐Delić ◽  
Michèle Crèvecoeur ◽  
...  

Symbiotic nitrogen fixation between legumes and rhizobia involves a coordinated expression of many plant and bacterial genes as well as finely tuned metabolic activities of micro- and macrosymbionts. In spite of such complex interactions, symbiotic proficiency remains a resilient process, with host plants apparently capable of compensating for some deficiencies in rhizobia. What controls nodule homeostasis is still poorly understood and probably varies between plant species. In this respect, the promiscuous Sinorhizobium (Ensifer) fredii strain NGR234 has become a model to assess the relative contribution of single gene products to many symbioses. Here, we describe how a deletion in nifQ of NGR234 (strain NGRΔnifQ) makes nodules of Vigna unguiculata, V. radiata, and Macroptilium atropurpureum but not of the mimisoid tree Leucaena leucocephala, purple-red. This peculiar dark-nodule phenotype did not necessarily correlate with a decreased proficiency of NGRΔnifQ but coincided with a 20-fold or more accumulation of coproporphyrin III and uroporphyrin III in V. unguiculata nodules. Porphyrin accumulation was not restricted to plant cells infected with bacteroids but also extended to the nodule cortex. Nodule metal-homeostasis was altered but not sufficiently to prevent assembly and functioning of nitrogenase. Although the role of NifQ in donating molybdenum during assembly of nitrogenase cofactor FeMo-co makes it essential in free-living diazotrophs, our results highlight the dispensability of NifQ in many legume species.


2010 ◽  
Vol 8 (4) ◽  
pp. 435-454 ◽  
Author(s):  
Kei E Fujimura ◽  
Nicole A Slusher ◽  
Michael D Cabana ◽  
Susan V Lynch
Keyword(s):  

Glycobiology ◽  
2020 ◽  
Author(s):  
Andrew Bell ◽  
Nathalie Juge

Abstract The gut microbiota plays a major role in human health and an alteration in gut microbiota structure and function has been implicated in several diseases. In the colon, mucus covering the epithelium is critical to maintain a homeostatic relationship with the gut microbiota by harboring a microbial community at safe distance from the epithelium surface. The mucin glycans composing the mucus layer provide binding sites and a sustainable source of nutrients to the bacteria inhabiting the mucus niche. Access to these glycan chains requires a complement of glycoside hydrolases (GHs) produced by bacteria across the phyla constituting the human gut microbiota. Due to the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria breakdown and utilize host mucin glycans has become of increased interest and is reviewed here. This short review provides an overview of the strategies evolved by gut commensal bacteria to access this rich source of the nutrient with a focus on the GHs involved in mucin degradation.


Sign in / Sign up

Export Citation Format

Share Document