scholarly journals Role of the gut microbiota in defining human health

2010 ◽  
Vol 8 (4) ◽  
pp. 435-454 ◽  
Author(s):  
Kei E Fujimura ◽  
Nicole A Slusher ◽  
Michael D Cabana ◽  
Susan V Lynch
Keyword(s):  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guojun Wu ◽  
Naisi Zhao ◽  
Chenhong Zhang ◽  
Yan Y. Lam ◽  
Liping Zhao

AbstractTo demonstrate the causative role of gut microbiome in human health and diseases, we first need to identify, via next-generation sequencing, potentially important functional members associated with specific health outcomes and disease phenotypes. However, due to the strain-level genetic complexity of the gut microbiota, microbiome datasets are highly dimensional and highly sparse in nature, making it challenging to identify putative causative agents of a particular disease phenotype. Members of an ecosystem seldomly live independently from each other. Instead, they develop local interactions and form inter-member organizations to influence the ecosystem’s higher-level patterns and functions. In the ecological study of macro-organisms, members are defined as belonging to the same “guild” if they exploit the same class of resources in a similar way or work together as a coherent functional group. Translating the concept of “guild” to the study of gut microbiota, we redefine guild as a group of bacteria that show consistent co-abundant behavior and likely to work together to contribute to the same ecological function. In this opinion article, we discuss how to use guilds as the aggregation unit to reduce dimensionality and sparsity in microbiome-wide association studies for identifying candidate gut bacteria that may causatively contribute to human health and diseases.


Author(s):  
Gordana Bojic ◽  
Svetlana Golocorbin-Kohn ◽  
Maja Stojancevic ◽  
Momir Mikov ◽  
Ljiljana Suvajdzic

The intestine habitat is the natural collection of symbiotic microorganisms. The bacterial population enables many permanent metabolic activities in this environment. Inside the intestine of mammals there are an extended genome of millions of bacterial genes named microbiome. In recent years, there has been an increased interest of scientists to discover the place and the role of bio-ecological content and modulation of gut microbiota in a host organism using prebiotics, probiotics and synbiotics, which may have a great benefit for human health.


2020 ◽  
Vol 8 (3) ◽  
pp. 206-214
Author(s):  
Xiaoli Zhang ◽  
Zui Pan

Abstract Gastric and esophageal cancers are multifactorial and multistage-involved malignancy. While the impact of gut microbiota on overall human health and diseases has been well documented, the influence of gastric and esophageal microbiota on gastric and esophageal cancers remains unclear. This review will discuss the reported alteration in the composition of gastric and esophageal microbiota in normal and disease conditions, and the potential role of dysbiosis in carcinogenesis and tumorigenesis. This review will also discuss how dysbiosis stimulates local and systemic immunity, which may impact on the immunotherapy for cancer.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Mia C. Theilmann ◽  
Yong Jun Goh ◽  
Kristian Fog Nielsen ◽  
Todd R. Klaenhammer ◽  
Rodolphe Barrangou ◽  
...  

ABSTRACT Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus. These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. IMPORTANCE Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota. IMPORTANCE Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota.


Glycobiology ◽  
2020 ◽  
Author(s):  
Andrew Bell ◽  
Nathalie Juge

Abstract The gut microbiota plays a major role in human health and an alteration in gut microbiota structure and function has been implicated in several diseases. In the colon, mucus covering the epithelium is critical to maintain a homeostatic relationship with the gut microbiota by harboring a microbial community at safe distance from the epithelium surface. The mucin glycans composing the mucus layer provide binding sites and a sustainable source of nutrients to the bacteria inhabiting the mucus niche. Access to these glycan chains requires a complement of glycoside hydrolases (GHs) produced by bacteria across the phyla constituting the human gut microbiota. Due to the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria breakdown and utilize host mucin glycans has become of increased interest and is reviewed here. This short review provides an overview of the strategies evolved by gut commensal bacteria to access this rich source of the nutrient with a focus on the GHs involved in mucin degradation.


2020 ◽  
Vol 10 (8) ◽  
pp. 458
Author(s):  
Aleksandra Chałupnik ◽  
Zuzanna Chilimoniuk ◽  
Anna Sobstyl ◽  
Maciej Dobosz ◽  
Aleksandra Borkowska ◽  
...  
Keyword(s):  

Author(s):  
Dong-Yu Kan ◽  
Su-Juan Li ◽  
Chen-Chen Liu ◽  
Ren-Rong Wu

Schizophrenia is a chronic and severe mental disorder with antipsychotics as primary medications, but the antipsychotic-induced metabolic side effects may contribute to the elevated risk of overall morbidity and mortality in patients with psych-iatric diseases. With the development in sequencing technology and bioinformatics, dysbiosis has been shown to contribute to body weight gain and metabolic dysfunction. However, the role of gut microbiota in the antipsychotic-induced metabolic alteration remains unknown. In this paper, we reviewed the recent studies of the gut microbiota with psychiatric disorders and antipsychotic-induced metabolic dysfunction. Patients with neuropsychiatric disorders may have a different composi-tion of gut microbiota compared with healthy controls. In addition, it seems that the use of antipsychotics is concurrently associated with both altered composition of gut microbiota and metabolic disturbance. Further study is needed to address the role of gut microbiota in the development of neuropsychiatric disorders and antipsychotic-induced metabolic disturbance, to develop novel therapeutics for both neuropsychiatric disorders and metabolic dysfunction.


2020 ◽  
Vol 19 (2) ◽  
pp. 139-145
Author(s):  
Sheena Chhabra ◽  
Apurva Bakshi ◽  
Ravineet Kaur

Nutraceuticals have been around for quite some time. As the nomenclature suggests, they are placed somewhere between food (nutra-) and medicine (-ceuticals) in terms of their impact on human health. Researches have focused on the impact of various types of nutraceuticals on health, their efficacy in health promotion and disease prevention, and often on suitable uses of certain categories of nutraceuticals for specific health issues. However, we are still far from utilizing the immense potential of nutraceuticals for benefiting human health in a substantial manner. We review the available scholarly literature regarding the role of nutraceuticals in health promotion, their efficacy in disease prevention and the perception of nutraceuticals' health benefits by consumers. Thereafter we analyze the need for regulation of nutraceuticals and various provisions regarding the same.


Sign in / Sign up

Export Citation Format

Share Document