Leaf Water Content in Two Alpine Plants on Mt. Washington, New Hampshire

Ecology ◽  
1964 ◽  
Vol 45 (1) ◽  
pp. 163
Author(s):  
L. C. Bliss
Author(s):  
Rahul Raj ◽  
Jeffrey P. Walker ◽  
Vishal Vinod ◽  
Rohit Pingale ◽  
Balaji Naik ◽  
...  

2021 ◽  
Vol 124 ◽  
pp. 107395
Author(s):  
Huailin Zhou ◽  
Guangsheng Zhou ◽  
Qijin He ◽  
Li Zhou ◽  
Yuhe Ji ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2634
Author(s):  
Qiyuan Wang ◽  
Yanling Zhao ◽  
Feifei Yang ◽  
Tao Liu ◽  
Wu Xiao ◽  
...  

Vegetation heat-stress assessment in the reclamation areas of coal gangue dumps is of great significance in controlling spontaneous combustion; through a temperature gradient experiment, we collected leaf spectra and water content data on alfalfa. We then obtained the optimal spectral features of appropriate leaf water content indicators through time series analysis, correlation analysis, and Lasso regression analysis. A spectral feature-based long short-term memory (SF-LSTM) model is proposed to estimate alfalfa’s heat stress level; the live fuel moisture content (LFMC) varies significantly with time and has high regularity. Correlation analysis of the raw spectrum, first-derivative spectrum, spectral reflectance indices, and leaf water content data shows that LFMC and spectral data were the most strongly correlated. Combined with Lasso regression analysis, the optimal spectral features were the first-derivative spectral value at 1661 nm (abbreviated as FDS (1661)), RVI (1525,1771), DVI (1412,740), and NDVI (1447,1803). When the classification strategies were divided into three categories and the time sequence length of the spectral features was set to five consecutive monitoring dates, the SF-LSTM model had the highest accuracy in estimating the heat stress level in alfalfa; the results provide an important theoretical basis and technical support for vegetation heat-stress assessment in coal gangue dump reclamation areas.


2013 ◽  
Vol 40 (4) ◽  
pp. 409 ◽  
Author(s):  
Harald Hackl ◽  
Bodo Mistele ◽  
Yuncai Hu ◽  
Urs Schmidhalter

Spectral measurements allow fast nondestructive assessment of plant traits under controlled greenhouse and close-to-field conditions. Field crop stands differ from pot-grown plants, which may affect the ability to assess stress-related traits by nondestructive high-throughput measurements. This study analysed the potential to detect salt stress-related traits of spring wheat (Triticum aestivum L.) cultivars grown in pots or in a close-to-field container platform. In two experiments, selected spectral indices assessed by active and passive spectral sensing were related to the fresh weight of the aboveground biomass, the water content of the aboveground biomass, the leaf water potential and the relative leaf water content of two cultivars with different salt tolerance. The traits were better ascertained by spectral sensing of container-grown plants compared with pot-grown plants. This may be due to a decreased match between the sensors’ footprint and the plant area of the pot-grown plants, which was further characterised by enhanced senescence of lower leaves. The reflectance ratio R760 : R670, the normalised difference vegetation index and the reflectance ratio R780 : R550 spectral indices were the best indices and were significantly related to the fresh weight, the water content of the aboveground biomass and the water potential of the youngest fully developed leaf. Passive sensors delivered similar relationships to active sensors. Across all treatments, both cultivars were successfully differentiated using either destructively or nondestructively assessed parameters. Although spectral sensors provide fast and qualitatively good assessments of the traits of salt-stressed plants, further research is required to describe the potential and limitations of spectral sensing.


2019 ◽  
Vol 104 ◽  
pp. 41-47 ◽  
Author(s):  
Wenpeng Lin ◽  
Yuan Li ◽  
Shiqiang Du ◽  
Yuanfan Zheng ◽  
Jun Gao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruomeng Wang ◽  
Nianpeng He ◽  
Shenggong Li ◽  
Li Xu ◽  
Mingxu Li

AbstractLeaf water content (LWC) has important physiological and ecological significance for plant growth. However, it is still unclear how LWC varies over large spatial scale and with plant adaptation strategies. Here, we measured the LWC of 1365 grassland plants, along three comparative precipitation transects from meadow to desert on the Mongolia Plateau (MP), Loess Plateau, and Tibetan Plateau, respectively, to explore its spatial variation and the underlying mechanisms that determine this variation. The LWC data were normally distributed with an average value of 0.66 g g−1. LWC was not significantly different among the three plateaus, but it differed significantly among different plant life forms. Spatially, LWC in the three plateaus all decreased and then increased from meadow to desert grassland along a precipitation gradient. Unexpectedly, climate and genetic evolution only explained a small proportion of the spatial variation of LWC in all plateaus, and LWC was only weakly correlated with precipitation in the water-limited MP. Overall, the lasso variation in LWC with precipitation in all plateaus represented an underlying trade-off between structural investment and water income in plants, for better survival in various environments. In brief, plants should invest less to thrive in a humid environment (meadow), increase more investment to keep a relatively stable LWC in a drying environment, and have high investment to hold higher LWC in a dry environment (desert). Combined, these results indicate that LWC should be an important variable in future studies of large-scale trait variations.


2018 ◽  
Vol 9 ◽  
Author(s):  
Samuli Junttila ◽  
Junko Sugano ◽  
Mikko Vastaranta ◽  
Riikka Linnakoski ◽  
Harri Kaartinen ◽  
...  

2013 ◽  
Vol 67 (11) ◽  
pp. 1302-1307 ◽  
Author(s):  
Sakura Higa ◽  
Hikaru Kobori ◽  
Satoru Tsuchikawa

2017 ◽  
Vol 10 (5) ◽  
pp. 1545
Author(s):  
Josiclêda Domiciano Galvíncio

R E S U M OA Caatinga é um biome que sofre com grande variabilidade climática anual e intraanual. Essa variabilidade climática faz com que o bioma em grande parte do ano sofra com grande estresse hídrico. Estudar as relações existentes entre o conteúdo de água na planta e outras variáveis do ecossistemas, tais como: biomassa e evapotranspiração pode auxiliar e prever impactos da escassez hídrica e seca climatológica sobre a produção de biomassa do bioma Caatinga. Assim, este estudo pretende analisar as relações existentes entre o conteúdo de água na folha com a biomassa e evapotranspiração em área do bioma caatinga localizado em São José do Sabugi, Paraiba, Brasil. Foi utilizado o algoritmo SEBAL-Surface Energy Balance para estimar a evapotranspiração e o foram calculados os índices de vegetação NDVI- Normalized Difference Vegetation Index, SAVI- Soil Adjusted Vegetation Index e o índice de conteúdo de água na folha LWCI- Leaf Water Content Index. Os resultados mostraram uma boa relação existente entre os índices de vegetação e o conteúdo de água na folha, sendo r=0.76 para o SAVI e 0.64 para o NDVI. Para a evapotranspiração a correlação foi de r =0.386. Conclui-se que a quantidade de água na folha está altamente correlacionada com a biomassa.Palavra chave: bioma, sazonalidade, seca, semiárido. A B S T R A C TThe Caatinga is a biome that suffers from high annual and intra-annual climatic variability. This climatic variability makes the biome in great part of the year suffer with high great water stress. To study the relationships between water content in the plant and other ecosystem variables, such as: biomass and evapotranspiration can help and predict impacts of water scarcity and climatological drought on the biomass production of the Caatinga biome. Thus, this study intends to analyze the relationship between water content in the leaf with biomass and evapotranspiration in the area of the caatinga biome located in São José do Sabugi, Paraiba, Brazil. The SEBAL-Surface Energy Balance algorithm was used to estimate the evapotranspiration and NDVI-Normalized Difference Vegetation Index, SAVI-Soil Adjusted Vegetation Index and the water content index in the LWCI- Leaf Water Content Index. were calculated. The results showed a good relationship between vegetation index and leaf water content, with r = 0.76 for SAVI and 0.64 for NDVI. For evapotranspiration the correlation was r = 0.386. It is concluded that the amount of water in the leaf is highly correlated with the biomass.Keywords: biome, seasonality, dry, semiarid


Sign in / Sign up

Export Citation Format

Share Document