scholarly journals Effects of Interactions between Nodule Count of Spheroidal Graphite and Retained Austenite on Tensile Properties of Austempered Ductile Cast Iron Heat Treated from (α + γ) Range

2020 ◽  
Vol 61 (3) ◽  
pp. 522-527
Author(s):  
Tatsuo Inoue ◽  
Atsushi Ito ◽  
Shiro Torizuka
1984 ◽  
Vol 34 ◽  
Author(s):  
J. D. Verhoeven ◽  
A. El Nagar ◽  
B. El Sarnagawa ◽  
D. P. Cornwell ◽  
F. Laabs

ABSTRACTExperiments were carried out on unalloyed ductile cast iron to evaluate the % retained austenite (%RY) and its lattice parameter as a function of austenitizing time and temperature for austempering temperatures ranging from 270 to 420°C. Results are related to expected carbon levels in the gamma iron matrix at the austenitizing temperature. It is shown that the rate of austenitization can be described as a two step process and experiments demonstrate that 900°C austenitizatlon is complete after 8m. An 1100°C homogenizatdon has been shown to have a small effect upon %RY and rate of austenitization.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 967
Author(s):  
Regita Bendikiene ◽  
Antanas Ciuplys ◽  
Ramunas Cesnavicius ◽  
Audrius Jutas ◽  
Aliaksandr Bahdanovich ◽  
...  

The influence of the austempering temperatures on the microstructure and mechanical properties of austempered ductile cast iron (ADI) was investigated. ADI is nodular graphite cast iron, which owing to higher strength and elongation, exceeds mechanical properties of conventional spheroidal graphite cast iron. Such a combination of properties is achieved by the heat treatment through austenitization, followed by austempering at different temperatures. The austenitization conditions were the same for all the samples: temperature 890 °C, duration 30 min, and quenching in a salt bath. The main focus of this research was on the influence of the austempering temperatures (270 °C, 300 °C, and 330 °C) on the microstructure evolution, elongation, toughness, and fatigue resistance of ADI modified by certain amounts of Ni, Cu, and Mo. The Vickers and Rockwell hardness decreased from 535.7 to 405.3 HV/1 (55.7 to 44.5 HRC) as the austempering temperature increased. Optical images showed the formation of graphite nodules and a matrix composed of ausferrite; the presence of these phases was confirmed by an XRD diffraction pattern. A fracture surface analysis revealed several types of the mechanisms: cleavage ductile, transgranular, and ductile dimple fracture. The stress-controlled mechanical fatigue experiments revealed that a 330 °C austempering temperature ensures the highest fatigue life of ADI.


1991 ◽  
Vol 35 (A) ◽  
pp. 503-510 ◽  
Author(s):  
Yoichi Kishi ◽  
Yukio Hirose ◽  
Zenjiro Yajima ◽  
Keisuke Tanaka

Austempered ductile cast iron (ADI) lias microstructures that consist of martensite and of retained austenite. ADI has very toughness compared with cast iron heat-treated differently. The retained austenite near fracture surfaces transforms to martensite when fracture occurs.In the present study, X-ray fraetography is applied to fatigue fracture surfaces of ADI. The fatigue tests were carried out on compact tension (CT) specimens. The volume fraction of retained austenite was measured quantitatively and the line broadening of X-ray diffraction profiles was measured on and beneath fatigue fracture surfaces. The depth of the plastic zone left on fracture surfaces was evaluated from line broadening. The results are discussed on the basis of fracture mechanics.


2018 ◽  
Vol 925 ◽  
pp. 118-124 ◽  
Author(s):  
Mathias Karsten Bjerre ◽  
Mohammed Azeem ◽  
Peter D. Lee ◽  
Jesper Henri Hattel ◽  
Niels Skat Tiedje

Recent experiments resolved nucleation and growth of graphite during solidification of ductile cast iron in 4D using synchrotron X-ray tomography. A numerical model for microstructure formation during solidification is compared with the experiments. Despite very good overall agreement between observations of spheroidal graphite growth and model results, significant deviations exist towards the end of solidification. We use the experimental observations to analyse the relation between graphite growth rate and the state of the particle neighbourhood to pinpoint possible links between growth rate of individual graphite spheres and the overall solidification state. With this insight we revisit existing models for growth of spheroidal graphite and discuss possible modifications in order to correctly describe the critical final stage of solidification.


PRICM ◽  
2013 ◽  
pp. 3459-3464
Author(s):  
Takamichi Hara ◽  
Takahiro Kitagawa ◽  
Susumu Ikeno ◽  
Seiji Saikawa ◽  
Kiyoshi Terayama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document