scholarly journals Study on Breakup Length of Liquid Jet by Liquid-Gas Coaxial Injector —Evaluation of Atomization Characteristics of Rocket Engine Injectors—

2006 ◽  
Vol 49 (165) ◽  
pp. 162-168 ◽  
Author(s):  
Nobuyuki YATSUYANAGI
2016 ◽  
Vol 9 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Rahul Anand ◽  
PR Ajayalal ◽  
Vikash Kumar ◽  
A Salih ◽  
K Nandakumar

To achieve uniform and efficient combustion in a rocket engine, a fine uniform spray is needed. The same is achieved by designing an injector with good atomization characteristics. Gas-centered swirl coaxial (GCSC) injector elements have been preferred recently in liquid rocket engines because of an inherent capability to dampen the pressure oscillations in the thrust chamber. The gas-centered swirl coaxial injector chosen for this study is proposed to be used in a semi-cryogenic rocket engine operating with oxidizer rich hot exhaust gases from the pre-burner and liquid kerosene as fuel. In this paper, nine different configurations of gas-centered swirl coaxial injector, sorted out by studying the spray angle and coefficient of discharge with swirl number varying from 9 to 20 and recess ratio of 0.5, 1, and 1.5 are investigated for their atomization characteristics. Spray uniformity, spray cone angle, and droplet size in terms of Sauter mean diameter and mass median diameter are studied at various momentum flux ratios for all configurations. Sauter mean diameter is almost independent of recess ratio, whereas cone angle was inversely proportional to the recess ratio. A finer atomization was observed for injectors of high swirl number but the pressure drop also increased to achieve the same flow rate. An injector of medium swirl number and recess ratio of 1.5 is deemed most fit for above-mentioned application.


Author(s):  
Youngbin Yoon ◽  
Gujeong Park ◽  
Sukil Oh ◽  
Jinhyun Bae

Studies on combustion instability in liquid rocket engines are important in improving combustion efficiency andpreventing combustion chamber losses. To prevent combustion instability, methods such as baffles and cavities are used. The injector is located in the middle of the perturbation-propagation process in the rocket engine, so it is important to study the suppression of combustion instability using the design of the injector. Much research has been focused on the study of liquid excitation in a single injector; however, the actual injector used in a liquid rocket engine is a coaxial injector. In this study, the dynamic characteristics of a gas-centred swirl coaxial injector were investigated by varying the gap thickness and momentum-flux ratio. Spray photographs were captured by synchronizing a stroboscope and digital camera, and a high-speed camera and Xenon lamp were also used. To measure the liquid film, a measurement system was implemented using the electrical conductance method. For excitation of the gas, an acoustic speaker was used to impart a frequency to the gas. The gGas velocity and effect of excitation were measured by hot-wire anemometry. A mechanical pulsator was used for liquid flow excitation. Liquid fluctuation was measured by a dynamic pressure sensor. In both gas and liquid excitation cases, the gain increased as the gap thickness decreased and the momentum-flux ratio increased. From these results, it can be concluded that gap thickness and momentum-flux ratio are major factors in suppressing combustioninstability. DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4653


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yakang Xia ◽  
Lyes Khezzar ◽  
Shrinivas Bojanampati ◽  
Arman Molki

Flow visualization experiments are carried out to study the flow regimes and breakup length of the water sheet generated by two impinging liquid jets from an atomizer made of two identical tubes 0.686 mm in diameter. These experiments cover liquid jet Reynolds numbers based on the pipe diameter in the range of 1541 to 5394. The effects of the jet velocities and impingement angle between the two jets on the breakup performance are studied. Four spray patterns are recognized, which are presheet formation, smooth sheet, ruffled sheet, and open-rim sheet regimes. Water sheet breakup length is found to be consistent with previous experimental and theoretical results in the lower Weber number (based on water jet diameter and velocity) range. In the relatively high Weber number range, the breakup length tends to a constant value with increasing Weber number, and some discrepancies between experimental and theoretical predictions do exist. Measured water sheet area increases with increasing liquid jet Reynolds numbers and impingement angle within the range of the current study.


2004 ◽  
Vol 36 (4) ◽  
pp. 528-539 ◽  
Author(s):  
W. O. H. Mayer ✝ ◽  
R. Branam

Author(s):  
Tushar Sikroria ◽  
Abhijit Kushari ◽  
Saadat Syed ◽  
Jeffery A. Lovett

This paper presents the results of an experimental investigation of liquid jet breakup in a cross flow of air under the influence of swirl (swirl numbers 0 and 0.2) at a fixed air flow Mach number 0.12 (typical gas turbine conditions). The experiments have been conducted for various liquid to air momentum flux ratios (q) in the range of 1 to 25. High speed (@ 500 fps) images of the jet breakup process are captured and those images are processed using matlab to obtain the variation of breakup length and penetration height with momentum flux ratio. Using the high speed images, an attempt has been made to understand the physics of the jet breakup process by identification of breakup modes—bag breakup, column breakup, shear breakup, and surface breakup. The results show unique breakup and penetration behavior which departs from the continuous correlations typically used. Furthermore, the images show a substantial spatial fluctuation of the emerging jet resulting in a wavy nature related to effects of instability waves. The results with 15 deg swirl show reduced breakup length and penetration related to the nonuniform distribution of velocity that offers enhanced fuel atomization in swirling fuel nozzles.


1995 ◽  
Vol 11 (3) ◽  
pp. 513-518 ◽  
Author(s):  
Wolfgang Mayer ◽  
Gerd Krulle

Author(s):  
Fabian Denner ◽  
Fabien Evrard ◽  
Alfonso Arturo Castrejón-Pita ◽  
José Rafael Castrejón-Pita ◽  
Berend van Wachem

AbstractThe evolution of the capillary breakup of a liquid jet under large excitation amplitudes in a parameter regime relevant to inkjet printing is analysed using three-dimensional numerical simulations. The results exhibit a reversal of the breakup length of the jet occurring when the velocity scales associated with the excitation of the jet and surface tension are comparable, and an inversion of the breakup from front-pinching to back-pinching at sufficiently large excitation amplitudes. Both phenomena are shown to be associated with the formation of vortex rings and a local flow obstruction inside the jet, which modify the evolution of the jet by locally reducing or even reversing the growth of the capillary instability. Hence, this study provides a mechanism for the well-known breakup reversal and breakup inversion, which are both prominent phenomena in inkjet printing. An empirical similarity model for the reversal breakup length is proposed, which is shown to be valid throughout the considered range of characteristic parameters. Hence, even though the fluid dynamics observed in capillary jet breakup with large excitation amplitudes are complex, the presented findings allow an accurate prediction of the behaviour of jets in many practically relevant situations, especially continuous inkjet printing.


Author(s):  
Ehsan Farvardin ◽  
Ali Dolatabadi

Numerical simulation of liquid jets ejecting from a set of elliptical jets with different aspect ratios between 1 (circular) to 3.85 is performed for several Weber numbers ranging 15 to 330. The axis-switching phenomenon and breakup length of the jets are characterized by means of a Volume of Fluid (VOF) method together with a dynamic mesh refinement model. This three dimensional simulation is compared with a recent experimental work and the results agree well. It is concluded that at Weber numbers less than 100, the breakup length of the liquid jet increases, reaches a peak and then decreases suddenly.


Sign in / Sign up

Export Citation Format

Share Document