scholarly journals In vitro cytotoxic evaluation of novel fast-setting calcium silicate cement compositions and dental materials using colorimetric methyl-thiazolyl-tetrazolium assay

2018 ◽  
Vol 60 (1) ◽  
pp. 82-88 ◽  
Author(s):  
Bahram Ranjkesh ◽  
Flemming Isidor ◽  
David Christian Evar Kraft ◽  
Henrik Løvschall
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. Koubi ◽  
H. Elmerini ◽  
G. Koubi ◽  
H. Tassery ◽  
J. Camps

This study compared thein vitromarginal integrity of open-sandwich restorations based on aged calcium silicate cement versus resin-modified glass ionomer cement. Class II cavities were prepared on 30 extracted human third molars. These teeth were randomly assigned to two groups () to compare a new hydraulic calcium silicate cement designed for restorative dentistry (Biodentine, Septodont, Saint Maur des Fossés, France) with a resin-modified glass ionomer cement (Ionolux, Voco, Cuxhaven, Germany) in open-sandwich restorations covered with a light-cured composite. Positive () and negative () controls were included. The teeth simultaneously underwent thermocycling and mechanocycling using a fatigue cycling machine (1,440 cycles, 5–55°C; 86,400 cycles, 50 N/cm2). The specimens were then stored in phosphate-buffered saline to simulate aging. After 1 year, the teeth were submitted to glucose diffusion, and the resulting data were analyzed with a nonparametric Mann-Whitney test. The Biodentine group and the Ionolux group presented glucose concentrations of 0.074 ± 0.035 g/L and 0.080 ± 0.032 g/L, respectively. No statistically significant differences were detected between the two groups. Therefore, the calcium silicate-based material performs as well as the resin-modified glass ionomer cement in open-sandwich restorations.


2020 ◽  
Vol 117 ◽  
pp. 111297 ◽  
Author(s):  
I-Ting Wu ◽  
Pan-Fu Kao ◽  
Yun-Ru Huang ◽  
Shinn-Jyh Ding

2019 ◽  
Vol 8 (9) ◽  
pp. 1440 ◽  
Author(s):  
Motoki Okamoto ◽  
Manahil Ali ◽  
Shungo Komichi ◽  
Masakatsu Watanabe ◽  
Hailing Huang ◽  
...  

The induction of tissue mineralization and the mechanism by which surface pre-reacted glass-ionomer (S-PRG) cement influences pulpal healing remain unclear. We evaluated S-PRG cement-induced tertiary dentin formation in vivo, and its effect on the pulp cell healing process in vitro. Induced tertiary dentin formation was evaluated with micro-computed tomography (μCT) and scanning electron microscopy (SEM). The distribution of elements from the S-PRG cement in pulpal tissue was confirmed by micro-X-ray fluorescence (μXRF). The effects of S-PRG cement on cytotoxicity, proliferation, formation of mineralized nodules, and gene expression in human dental pulp stem cells (hDPSCs) were assessed in vitro. μCT and SEM revealed that S-PRG induced tertiary dentin formation with similar characteristics to that induced by hydraulic calcium-silicate cement (ProRoot mineral trioxide aggregate (MTA)). μXRF showed Sr and Si ion transfer into pulpal tissue from S-PRG cement. Notably, S-PRG cement and MTA showed similar biocompatibility. A co-culture of hDPSCs and S-PRG discs promoted mineralized nodule formation on surrounding cells. Additionally, S-PRG cement regulated the expression of genes related to osteo/dentinogenic differentiation. MTA and S-PRG regulated gene expression in hDPSCs, but the patterns of regulation differed. S-PRG cement upregulated CXCL-12 and TGF-β1 gene expression. These findings showed that S-PRG and MTA exhibit similar effects on dental pulp through different mechanisms.


2006 ◽  
Vol 309-311 ◽  
pp. 829-832 ◽  
Author(s):  
Hakan Engqvist ◽  
S. Edlund ◽  
Gunilla Gómez-Ortega ◽  
Jesper Lööf ◽  
Leif Hermansson

The objective of the paper is to investigate the mechanical and the handling properties of a novel injectable bone void filler based on calcium silicate. The orthopaedic cement based on calcium silicate was compared to a calcium phosphate cement, Norian SRS from Syntes Stratec, with regard to the working (ejection through 14 G needle) and setting time (Gillmore needles), Young’s modulus and the flexural (ASTM F-394) and compressive (ISO 9917) strength after storage in phosphate buffer saline at body temperature for time points from 1h up to 16 weeks. The calcium silicate cement is composed of a calcium silicate powder (grain size below 20 µm) that is mixed with a liquid (water and CaCl2) into a paste using a spatula and a mixing cup. The water to cement ratio used was about 0.5. The calcium silicate had a working time of 15 minutes and a setting time of 17 minutes compared to 5 and 10 minutes respectively for the calcium phosphate cement. The compressive strength was considerably higher for the calcium silicate cement (>100 MPa) compared to the calcium phosphate cement (>40 MPa). Regarding the flexural strength the calcium silicate cement had high values for up to 1 week (> 40 MPa) but it decreased to 25 MPa after 16 weeks. The phosphate cement had a constant flexural strength of about 25 MPa. The results show that calcium silicate cement has the mechanical and handling potential to be used as high strength bone void filler.


2021 ◽  
Vol 11 (5) ◽  
pp. 2339
Author(s):  
Joanna Metlerska ◽  
Till Dammaschke ◽  
Mariusz Lipski ◽  
Irini Fagogeni ◽  
Anna Machoy-Mokrzyńska ◽  
...  

The aim of the present in vitro study was to investigate the effects of 10% and 40% citric acid (CA) on the color of calcium silicate–based cements (CSCs) in comparison to the effects of common root canal irrigants. Samples of six CSCs (n = 6)—ProRoot MTA (Dentsply, Tulsa, OK, USA), Biodentine (Septodont, Saint-Maur-des-Fossés, France), MTA Plus (Avalon Biomed Inc, by Prevest Denpro Limited, Jammu, India), MTA Repair HP (Angelus, Londrina, PR, Brazil), Ortho MTA (BioMTA, Seoul, Korea), and Retro MTA (BioMTA, Seoul, Korea)—were immersed in 10% and 40% CA as well as 15% EDTA, 2% NaOCl, 2% CHX, and 0.9% NaCl for 15 min, 1 h, and 24 h. ΔE values, representing the difference between the final and baseline values of the color components, were then determined using a VITA Easyshade Compact 5.0 spectrophotometer. Naked-eye evaluation of the changes in color and structures of the materials was performed using our own scale. Upon immersion of the materials in both 10% and 40% CA, there were statistically significant differences between spectrophotometric color measurement results for all CSCs (P < 0.05). However, CA does not cause dark discoloration, observable with the naked eye, of any of the materials, such as NaOCl and CHX. Significant statistical differences were also found between all CSCs in terms of submersion duration (P < 0.05). CA, which could be an alternative to EDTA use, caused greater CSCs discoloration and changed some of their structures. Unless required by the therapeutic procedure, clinicians should pay attention to the fact that the irrigant may affect the CSCs discoloration and minimize the contact time of irrigant with CSCs.


Author(s):  
Ralf Krug ◽  
C. Ortmann ◽  
S. Reich ◽  
B. Hahn ◽  
G. Krastl ◽  
...  

Abstract Objectives To assess tooth discoloration induced by different hydraulic calcium silicate-based cements (HCSCs), including effects of blood and placement method. Materials and methods Eighty bovine teeth cut to a length of 18 mm (crown 8 mm, root 10 mm) were randomly assigned to 10 groups (n = 8), receiving orthograde apical plug treatment (APT). Apical plugs were 4 mm in length and made of ProRoot MTA (Dentsply), Medcem MTA (Medcem), TotalFill BC RRM Fast Set Putty (Brasseler), or Medcem Medical Portland Cement (Medcem) plus bismuth oxide (Bi2O3) with and without bovine blood. Further, orthograde (with or without preoperative adhesive coronal dentin sealing) and retrograde APT were compared. Teeth were obturated with gutta-percha and sealer, sealed with composite and stored in distilled water. Tooth color was measured on apical plug, gutta-percha/sealer, and crown surface before treatment versus 24 h, 1, 3, 6, 12, and 24 months after treatment by spectrophotometry. Color difference (ΔE) values were calculated and analyzed by Shapiro–Wilk test, ANOVA with post hoc tests, Friedman test, t test, and post hoc tests with Bonferroni correction (α = .05). Results Tooth discoloration occurred in all groups with no significant differences between HCSCs (p > .05). After 24 months, color changes were prominent on roots but insignificant on crowns. Blood contamination induced a significantly decreased luminescence (p < .05). Blood had a stronger impact on tooth color than Bi2O3. No relevant effects of retrograde placement (p > .05) or preoperative dentin sealing (p > .05) were detected. Conclusions Apical plugs of the tested HCSCs cause discoloration of bovine roots, but not discoloration of bovine tooth crowns within a 24-month period. Clinical relevance APT should be performed carefully while avoiding direct contact with the coronal dentin, and in that case no aesthetic impairments occur.


1987 ◽  
Vol 14 (3) ◽  
pp. 166-167
Author(s):  
D. Arenholt-Bindslev ◽  
P. Hørsted-Bindslev ◽  
H.P. Philipsen

The aim of the present study was to compare the toxicity in vitro with the toxicity in vivo of two commercial chemicals marketed for use in the oral cavity (GLUMA BondR and 3M Etching LiquidR). Confluent cultures of human buccal epithelial cells were exposed to graded concentrations of GLUMA Bond or 3M Etching Liquid for 5 minutes. The cytotoxic effects induced by this treatment were observed (cytomorphology, proliferation rate). In vivo, monkey buccal epithelium was exposed to GLUMA Bond or 3M Etching Liquid for 5 minutes. Biopsies were taken after 24 hours, and the buccal epithelium processed for light microscopical examination. In both models, the toxic reactions to GLUMA Bond were far more extensive than those caused by 3M Etching Liquid.


Sign in / Sign up

Export Citation Format

Share Document