scholarly journals Inhibition of Src Kinase Blocks High Glucose-Induced EGFR Transactivation and Collagen Synthesis in Mesangial Cells and Prevents Diabetic Nephropathy in Mice

Diabetes ◽  
2013 ◽  
Vol 62 (11) ◽  
pp. 3874-3886 ◽  
Author(s):  
K. Taniguchi ◽  
L. Xia ◽  
H. J. Goldberg ◽  
K. W. K. Lee ◽  
A. Shah ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Yun ◽  
Jinyu Ren ◽  
Yufei Liu ◽  
Lijuan Dai ◽  
Liqun Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. Methods RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. Results Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. Conclusion All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Feng ◽  
Junling Gu ◽  
Fang Gou ◽  
Wei Huang ◽  
Chenlin Gao ◽  
...  

While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP), NLRP3, and IL-1βwas observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1βwere significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1βinflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.


2001 ◽  
Vol 280 (4) ◽  
pp. F667-F674 ◽  
Author(s):  
Chhinder P. Sodhi ◽  
Sarojini A. Phadke ◽  
Daniel Batlle ◽  
Atul Sahai

The effect of hypoxia on the proliferation and collagen synthesis of cultured rat mesangial cells was examined under normal-glucose (NG, 5 mM) and high-glucose (HG, 25 mM)-media conditions. In addition, a role for osteopontin (OPN) in mediating these processes was assessed. Quiescent cultures were exposed to hypoxia (3% O2) and normoxia (18% O2) in a serum-free medium with NG or HG, and cell proliferation, collagen synthesis, and OPN expression were assessed. Cells exposed to hypoxia in NG medium resulted in significant increases in [3H]thymidine incorporation, cell number, and [3H]proline incorporation, respectively. HG incubations also produced significant stimulation of these parameters under normoxic conditions, which were markedly enhanced in cells exposed to hypoxia in HG medium. In addition, hypoxia and HG stimulated the mRNA levels of type IV collagen, and the combination of hypoxia and HG resulted in additive increases in type IV collagen expression. Hypoxia and HG also stimulated OPN mRNA and protein levels in an additive fashion. A neutralizing antibody to OPN or its β3-integrin receptor significantly blocked the effect of hypoxia and HG on proliferation and collagen synthesis. In conclusion, these results demonstrate for the first time that hypoxia in HG medium produces exaggerated mesangial cell growth and type IV collagen synthesis. In addition, OPN appears to play a role in mediating the accelerated mesangial cell growth and collagen synthesis found in a hyperglycemic and hypoxic environment.


2011 ◽  
Vol 301 (4) ◽  
pp. E713-E726 ◽  
Author(s):  
Howard Goldberg ◽  
Catharine Whiteside ◽  
I. George Fantus

Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β- N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins ( O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechanism are lacking. We tested the hypothesis that O-GlcNAcylation enhances profibrotic signaling in rat mesangial cells. An adenovirus expressing shRNA directed against O-GlcNAc transferase (OGT) markedly reduced basal and high-glucose-stimulated O-GlcNAcylation. Interestingly, O-GlcNAc depletion prevented high-glucose-induced p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase phosphorylation. Downstream of p38, O-GlcNAc controlled the expression of plasminogen activator inhibitor-1, fibronectin, and transforming growth factor-β, important factors in matrix accumulation in diabetic nephropathy. Treating mesangial cells with thiamet-G, a highly selective inhibitor of O-GlcNAc-specific hexosaminidase ( O-GlcNAcase), increased O-GlcNAcylation and p38 phosphorylation. The high-glucose-stimulated kinase activity of apoptosis signal-regulating kinase 1 (ASK1), an upstream MAPK kinase kinase for p38 that is negatively regulated by Akt, was inhibited by OGT shRNA. Akt Thr308 and Ser473 phosphorylation were enhanced following OGT shRNA expression in high-glucose-exposed mesangial cells, but high-glucose-induced p38 phosphorylation was not attenuated by OGT shRNA in cells pretreated with the phosphatidylinositol 3-kinase inhibitor LY-294002. OGT shRNA also reduced high-glucose-stimulated reactive oxygen species (ROS) formation. In contrast, diminished O-GlcNAcylation caused elevated ERK phosphorylation and PKCδ membrane translocation. Thus, O-GlcNAcylation is coupled to profibrotic p38 MAPK signaling by high glucose in part through Akt and possibly through ROS.


2000 ◽  
Vol 165 (3) ◽  
pp. 617-624 ◽  
Author(s):  
NH Kim ◽  
HH Jung ◽  
DR Cha ◽  
DS Choi

Diabetic nephropathy associated with hyperglycemia is characterized by glomerular hyperfiltration and endothelial dysfunction. Vascular endothelial growth factor (VEGF) is known to be primarily involved in neoangiogenesis and increased endothelial permeability. The purpose of this study was to investigate VEGF expression in response to high glucose in rat cultured mesangial cells and to identify its signal pathway via protein kinase C (PKC). Rat mesangial cells were cultured with different concentrations of glucose: normal (5 mM d-glucose), medium (15 mM d-glucose) and high (30 mm d-glucose). Calphostin-C as a PKC inhibitor and phorbol myristate acetate (PMA) as a PKC downregulator were instillated into culture media to evaluate the role of PKC in mediating the glucose-induced increase in VEGF expression. High glucose increased expression of VEGF at the mRNA and protein levels, identified by semi-quantitative RT-PCR and western blotting, within 3 h and in a time- and glucose concentration-dependent manner. Calphostin-C and PMA inhibited glucose-induced increases in VEGF expression at the mRNA and protein levels. In conclusion, high glucose can directly increase VEGF expression in rat mesangial cells via a PKC-dependent mechanism. These results suggest that VEGF could be a potential mediator of glomerular hyperfiltration and proteinuria in diabetic nephropathy.


2014 ◽  
Vol 306 (11) ◽  
pp. F1308-F1317 ◽  
Author(s):  
Su-Zhen Wu ◽  
Fang-Fang Peng ◽  
Jia-Lin Li ◽  
Feng Ye ◽  
Shao-Qing Lei ◽  
...  

Glomerular matrix accumulation is a hallmark of diabetic renal disease. Serine/threonine kinase PKC-β1 mediates glucose-induced Akt S473 phosphorylation, RhoA activation, and transforming growth factor (TGF)-β1 upregulation and finally leads to matrix upregulation in mesangial cells (MCs). It has been reported that glucose-induced PKC-β1 activation is dependent on caveolin-1 and the presence of intact caveolae in MCs; however, whether activated PKC-β1 regulates caveolin-1 expression and phosphorylation are unknown. Here, we showed that, although the caveolin-1 protein level had no significant change, the PKC-β-specific inhibitor LY-333531 blocked caveolin-1 Y14 phosphorylation in high glucose (HG)-treated MCs and in the renal cortex of diabetic rats. The Src-specific inhibitor SU-6656 prevented the HG-induced association between PKC-β1 and caveolin-1 and PKC-β1 membrane translocation, whereas PKC-β1 small interfering RNA failed to block Src activation, indicating that Src kinase is upstream of PKC-β1 activation. Although LY-333531 blocked PKC-β1 membrane translocation, it had no effect on the PKC-β1/caveolin-1 association, suggesting that PKC-β1 activation requires the interaction of caveolin-1 and PKC-β1. PKC-β1-mediated Akt S473 phosphorylation, RhoA activation, and fibronectin upregulation in response to HG were prevented by SU-6656 and nonphosphorylatable mutant caveolin-1 Y14A. In conclusion, Src activation by HG mediates the PKC-β1/caveolin-1 association and PKC-β1 activation, which assists in caveolin-1 Y14 phosphorylation by Src kinase. The downstream effects, including Akt S473 phosphorylation, RhoA activation, and fibronectin upregulation, require caveolin-1 Y14 phosphorylation. Caveolin-1 is thus an important mediator of the profibrogenic process in diabetic renal disease.


2010 ◽  
Vol 88 (4) ◽  
pp. 635-648 ◽  
Author(s):  
Zhiguo Li ◽  
Haojun Zhang ◽  
Xi Dong ◽  
Frank J. Burczynski ◽  
Patrick Choy ◽  
...  

Diabetic nephropathy (DN) is one of the most important complications of diabetic patients and is characterized histologically by an accumulation of extracellular matrix (ECM) protein in the glomerular mesangium. Therefore, mesangial cells likely play an important role in the development of diabetic nephropathy. Here, we employed proteomic techniques to investigate the protein profile of rat mesangial cells under high-glucose culture conditions. Primary isolated rat glomerular mesangial cells were cultured under different concentrations of glucose (5.4 mmol·L–1 for normal control and 30 mmol·L–1 for high glucose) for 0, 8, 16, and 72 h, as well as for 25 days. Cellular total proteins were isolated from these cells and employed for two-dimensional gel electrophoresis (2-DE). Differentially expressed proteins were identified by matrix-assisted laser desorption – ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and some of these proteins were documented in rat models of diabetes by Western blot. Rat mesangial cells were successfully isolated in the laboratory and their proliferation rates were significantly inhibited by high glucose. Two-dimensional gel electrophoresis analyses revealed 28 differentially expressed protein spots between the normal and high-glucose groups. After MALDI-TOF-MS analysis, all 28 protein spots were successfully identified with the peptide mass fingerprint (PMF) method. Representatively, SOD1, PCBP1 and PSMA6 were validated by Western blot analysis following protein extractions from the normal and high-glucose groups. Abundance of these proteins was consistent with that found in 2-DE. Moreover, expression of SOD1, PCBP1, and PSMA6 in renal cortex was further examined in two rat models of diabetes (streptozotocin-induced and spontaneous OLETF diabetic models). Abundance of SOD1 and PCBP1 proteins did not show any significant difference between normal control and diabetic rats. However, abundance of the PSMA6 protein was significantly reduced in the renal cortex of both STZ-induced and spontaneous OLETF diabetic rats. Proteomic analysis identified 28 differentially expressed proteins in primary isolated rat mesangial cells between normal and high glucose treatments. Expression of one identified protein was found to be consistent with expression in the renal cortex of two rat diabetic models. Therefore, identification of protein expression patterns in mesangial cells can be employed to develop a therapeutic target for treatment of diabetic nephropathy.


Sign in / Sign up

Export Citation Format

Share Document