Long-Term Use of a High-Complex-Carbohydrate, High-Fiber, Low-Fat Diet and Exercise in the Treatment of NIDDM Patients

Diabetes Care ◽  
1983 ◽  
Vol 6 (3) ◽  
pp. 268-273 ◽  
Author(s):  
R. J. Barnard ◽  
M. R. Massey ◽  
S. Cherny ◽  
L. T. O'Brien ◽  
N. Pritikin
2009 ◽  
Vol 90 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Grant D Brinkworth ◽  
Manny Noakes ◽  
Jonathan D Buckley ◽  
Jennifer B Keogh ◽  
Peter M Clifton

1998 ◽  
Vol 98 (4) ◽  
pp. 408-413 ◽  
Author(s):  
SIAO MEI SHICK ◽  
RENA R WING ◽  
MARY L KLEM ◽  
MAUREEN T McGUIRE ◽  
JAMES O HILL ◽  
...  
Keyword(s):  
Low Fat ◽  

1999 ◽  
Vol 99 (9) ◽  
pp. A34
Author(s):  
K. Hoy ◽  
B. Winters ◽  
M. Lubin ◽  
E. Falk ◽  
D. Nixon ◽  
...  

2014 ◽  
Vol 34 (6) ◽  
pp. 491-498 ◽  
Author(s):  
Keiko Kondo ◽  
Atsushi Ishikado ◽  
Katsutaro Morino ◽  
Yoshihiko Nishio ◽  
Satoshi Ugi ◽  
...  

2016 ◽  
Vol 310 (11) ◽  
pp. E886-E899 ◽  
Author(s):  
Pia Kiilerich ◽  
Lene Secher Myrmel ◽  
Even Fjære ◽  
Qin Hao ◽  
Floor Hugenholtz ◽  
...  

Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein/sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue, affecting pathways related to metabolism and inflammation. Analysis of fecal bacterial DNA using the Mouse Intestinal Tract Chip revealed significant changes in the composition of the gut microbiota in relation to host age and dietary fat content, but not the protein/sucrose ratio. Accordingly, dietary fat rather than the protein/sucrose ratio or adiposity is a major driver shaping the gut microbiota, whereas the effect of a high-fat diet on survival is dependent on the protein/sucrose ratio.


2004 ◽  
Vol 22 (12) ◽  
pp. 2379-2387 ◽  
Author(s):  
Cheryl L. Rock ◽  
Shirley W. Flatt ◽  
Cynthia A. Thomson ◽  
Marcia L. Stefanick ◽  
Vicky A. Newman ◽  
...  

Purpose Diet intervention trials are testing whether postdiagnosis dietary modification can influence breast cancer recurrence and survival. One possible mechanism is an effect on reproductive steroid hormones. Participants and Methods Serum reproductive steroid hormones were measured at enrollment and 1 year in 291 women with a history of breast cancer who were enrolled onto a randomized, controlled diet intervention trial. Dietary goals for the intervention group were increased fiber, vegetable, and fruit intakes and reduced fat intake. Estradiol, bioavailable estradiol, estrone, estrone sulfate, androstenedione, testosterone, dehydroepiandrosterone sulfate, follicle-stimulating hormone, and sex hormone-binding globulin were measured. Results The intervention (but not the comparison) group reported a significantly lower intake of energy from fat (21% v 28%), and higher intake of fiber (29 g/d v 22 g/d), at 1-year follow-up (P < .001). Significant weight loss did not occur in either group. A significant difference in the change in bioavailable estradiol concentration from baseline to 1 year in the intervention (−13 pmol/L) versus the comparison (+3 pmol/L) group was observed (P < .05). Change in fiber (but not fat) intake was significantly and independently related to change in serum bioavailable estradiol (P < .01) and total estradiol (P < .05) concentrations. Conclusion Results from this study indicate that a high-fiber, low-fat diet intervention is associated with reduced serum bioavailable estradiol concentration in women diagnosed with breast cancer, the majority of whom did not exhibit weight loss. Increased fiber intake was independently related to the reduction in serum estradiol concentration.


2008 ◽  
Vol 22 (S2) ◽  
pp. 708-708 ◽  
Author(s):  
Linda Clare Tapsell ◽  
Marijka Batterham ◽  
Lynda Gillen ◽  
Karen Elizabeth Charlton
Keyword(s):  
Low Fat ◽  

2020 ◽  
Vol 48 (11) ◽  
pp. 030006052096401
Author(s):  
Wang Shuo ◽  
Haicong Li ◽  
Nishijo Muneko ◽  
Nishino Yoshikazu ◽  
Nobuo Kato ◽  
...  

Objective Regulator of calcineurin 1 (RCAN1) controls plasticity of the nervous system and depressive conditions by regulating brain-derived neurotropic factor (BDNF) and plays a crucial role in neural and cardiac pathways. The apolipoprotein E gene ( ApoE) is a robust risk factor for progression of Alzheimer’s disease. A fatty diet is considered detrimental for metabolic disorders, such as obesity and cardiovascular diseases. Methods We examined the neuronal and cardiac protective roles of RCAN1 in ApoE−/− mice that were fed a high- or low-fat diet with and without voluntary movement for 3 months. Organ weights, laboratory data, histology, RNA expression, and behavior were examined. Results A high-fat diet with exercise improved depressive function, as examined by the forced swimming test, and RCAN1 mRNA expression was induced in the hippocampus. A low-fat diet with exercise resulted in a reduced body weight, higher heart weight/body weight ratio, and lower circulating triglyceride levels compared with a low-fat diet without exercise. RCAN1 mRNA expression was increased in cardiomyocytes in ApoE−/− mice. Conclusions The combination of a high-fat diet and exercise might reduce depressive function, whereas a low-fat diet with exercise leads to cardioprotection. Induction of RCAN1 expression might affect neuroplasticity and cardiac function.


Circulation ◽  
2013 ◽  
Vol 127 (suppl_12) ◽  
Author(s):  
Tian Hu ◽  
Kristi Reynolds ◽  
Lu Yao ◽  
Calynn Bunol ◽  
Yanxi Liu ◽  
...  

The long-term effects of low-carbohydrate diets versus low-fat diets on endothelial dysfunction and insulin resistance are unclear. A total of 148 study participants with a body mass index of 30 - 45 kg/m2 (Mean: 35.4 kg/m2) who were free of diabetes, cardiovascular diseases and kidney disease were recruited. The participants were randomly assigned to either a low-carbohydrate diet (<40 g/day; N=75) or a low fat (<30% energy from fat, <10% from saturated fat; N=73) diet. Two 24-hour dietary recalls were conducted at each clinic visit (0, 3, 6 and 12 months of intervention). Participants met with a study dietitian weekly for the first month followed by group settings bi-weekly for 5 months and monthly for the last 6 months. Each group was provided the same behavioral curriculum related to diet emphasizing portion control and eating habits. Biomarkers for endothelial function and insulin resistance included E-selectin, Intercellular Adhesion Molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), Insulin-like growth Factor-1 (IGF-1), serum insulin, and glucose. Mixed-effect regression models including group, time and their interaction were used to analyze the data. Of the study participants, 60 in the low-fat group (81.1%) and 59 in the low-carbohydrate group (79.7%) completed the entire intervention. The mean age was 46.8 years, 88.5% were women and 55.1% were African-Americans. The low-carbohydrate group lost approximately 3.5 kg more body weight than did the low-fat group (P= 0.002) on average. Compared to the low-fat diet, the low-carbohydrate diet resulted in greater reductions in E-selectin (net change: -4.5, -4.3, and -3.8 ng/mL at 3, 6, and 12 months, respectively; overall P= 0.002) and ICAM-1 (net change: -7.3, -10.4, and -16.8 ng/mL at 3, 6, and 12 months, respectively; overall P= 0.06). There was no significant change in any other markers. Our findings suggest that the low-carbohydrate is at least as effective as the low-fat diet at improving endothelial dysfunction and insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document