scholarly journals Soluble Antigen Arrays Efficiently Deliver Peptides and Arrest Spontaneous Autoimmune Diabetes

Author(s):  
Rebuma Firdessa-Fite ◽  
Stephanie N. Johnson ◽  
Martin A. Leon ◽  
Mohsen Khosravi-Maharlooei ◽  
Rocky L. Baker ◽  
...  

Antigen-specific immunotherapy (ASIT) offers a targeted treatment of autoimmune diseases that selectively inhibits autoreactive lymphocytes, but there remains an unmet need for approaches that address their limited clinical efficacy. Soluble Antigen Arrays (SAgAs) deliver antigenic peptides or proteins in multivalent form, attached to a hyaluronic acid backbone using hydrolysable linkers (hSAgA) or stable “click” chemistry linkers (cSAgA). They were evaluated for the ability to block the spontaneous development of disease in the non-obese diabetic mouse model of Type 1 diabetes (T1D). Two peptides, a hybrid insulin peptide and a mimotope, efficiently prevented the onset of T1D when delivered in combination as SAgAs, but not individually. Relative to free peptides administered at equimolar dose, SAgAs (particularly cSAgA) enabled a more effective engagement of antigen-specific T cells with greater persistence and induction of tolerance markers such as CD73, IL-10, PD-1, KLRG-1. Anaphylaxis caused by the free peptides was attenuated using hSAgA and obviated using cSAgA platforms. Despite similarities, the two peptides elicited largely non-overlapping and possibly complementary responses among endogenous T cells in treated mice. Thus, SAgAs offer a novel and promising ASIT platform superior to soluble peptides in inducing tolerance while mitigating risks of anaphylaxis for the treatment of T1D.

2021 ◽  
Author(s):  
Rebuma Firdessa-Fite ◽  
Stephanie N. Johnson ◽  
Martin A. Leon ◽  
Mohsen Khosravi-Maharlooei ◽  
Rocky L. Baker ◽  
...  

Antigen-specific immunotherapy (ASIT) offers a targeted treatment of autoimmune diseases that selectively inhibits autoreactive lymphocytes, but there remains an unmet need for approaches that address their limited clinical efficacy. Soluble Antigen Arrays (SAgAs) deliver antigenic peptides or proteins in multivalent form, attached to a hyaluronic acid backbone using hydrolysable linkers (hSAgA) or stable “click” chemistry linkers (cSAgA). They were evaluated for the ability to block the spontaneous development of disease in the non-obese diabetic mouse model of Type 1 diabetes (T1D). Two peptides, a hybrid insulin peptide and a mimotope, efficiently prevented the onset of T1D when delivered in combination as SAgAs, but not individually. Relative to free peptides administered at equimolar dose, SAgAs (particularly cSAgA) enabled a more effective engagement of antigen-specific T cells with greater persistence and induction of tolerance markers such as CD73, IL-10, PD-1, KLRG-1. Anaphylaxis caused by the free peptides was attenuated using hSAgA and obviated using cSAgA platforms. Despite similarities, the two peptides elicited largely non-overlapping and possibly complementary responses among endogenous T cells in treated mice. Thus, SAgAs offer a novel and promising ASIT platform superior to soluble peptides in inducing tolerance while mitigating risks of anaphylaxis for the treatment of T1D.


2000 ◽  
Vol 192 (10) ◽  
pp. 1529-1534 ◽  
Author(s):  
Antonio G. Castro ◽  
Margaret Neighbors ◽  
Stephen D. Hurst ◽  
Francesca Zonin ◽  
Regina A. Silva ◽  
...  

Soluble foreign antigen usually leads to a transient clonal expansion of antigen-specific T cells followed by the deletion and/or functional inactivation of the cells. As interleukin (IL)-10 is a key immunoregulatory cytokine, we questioned whether neutralization of IL-10 during priming with soluble antigen could prime for a subsequent T helper cell type 1 (Th1) effector recall response. By using an adoptive transfer model to track the fate of antigen-specific T cell receptor (TCR)-transgenic CD4+ T cells, we show that administration of soluble ovalbumin (OVA) protein, but not OVA323–339 peptide antigen, together with an anti–IL-10 receptor (R) mAb led to the enhancement of a Th1 response upon rechallenge. Lipopolysaccharide (LPS) present in the protein was necessary for priming for Th1 recall responses in the presence of anti–IL-10R mAb, as removal of LPS abrogated this effect. Moreover, addition of LPS to the peptide did not itself allow priming for recall Th1 effector responses unless endogenous levels of IL-10 were neutralized with an anti–IL-10R mAb. A significant increase in OVA-specific IgG1 and IgG2a isotypes was observed when the protein antigen was administered with anti–IL-10R mAb; however, this was not the case with peptide antigen administered together with anti–IL-10R and LPS. Our data, showing that LPS receptor signaling and neutralization of endogenous immunosuppressive cytokines is essential for Th1 priming, has important implications for the design of relevant vaccines for effective in vivo immunotherapy.


2020 ◽  
Author(s):  
Heejoo Kim ◽  
Jelena Perovanovic ◽  
Arvind Shakya ◽  
Zuolian Shen ◽  
Cody N. German ◽  
...  

AbstractThe transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present, but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice, but diminished in monoclonal models specific to artificial or neoantigens. Rationally-designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels, and reduced T cell infiltration and proinflammatory cytokine expression in newly-diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.~40-word summary statement for the online JEM table of contents and alertsKim and colleagues show that OCA-B in T cells is essential for the generation of type-1 diabetes. OCA-B loss leaves the pancreatic lymph nodes largely undisturbed, but associates autoreactive CD4+ T cells in the pancreas with anergy while deleting potentially autoreactive CD8+ T cells.SummaryKim et al. show that loss or inhibition of OCA-B in T cells protects mice from type-1 diabetes.


PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0217728 ◽  
Author(s):  
Daniel R. Holohan ◽  
Frédéric Van Gool ◽  
Jeffrey A. Bluestone

2017 ◽  
Vol 114 (37) ◽  
pp. E7776-E7785 ◽  
Author(s):  
James F. Mohan ◽  
Rainer H. Kohler ◽  
Jonathan A. Hill ◽  
Ralph Weissleder ◽  
Diane Mathis ◽  
...  

Type 1 diabetes in the nonobese diabetic mouse stems from an infiltration of the pancreatic islets by a mixed population of immunocytes, which results in the impairment and eventual destruction of insulin-producing β-cells. Little is known about the dynamics of lymphocyte movement in the pancreas during disease progression. Using advanced intravital imaging approaches and newly created reporter mice (Flt3-BFP2, Mertk-GFP-DTR, Cd4-tdTomato, Cd8a-tdTomato), we show that the autoimmune process initiates first with a T cell infiltration into the islets, where they have restricted mobility but reside and are activated in apposition to CX3CR1+ macrophages. The main expansion then occurs in the connective tissue outside the islet, which remains more or less intact. CD4+ and CD8+ T cells, Tregs, and dendritic cells (DCs) are highly mobile, going along microvascular tracks, while static macrophages (MF) form a more rigid structure, often encasing the islet cell mass. Transient cell–cell interactions are formed between T cells and both MFs and DCs, but also surprisingly between MFs and DCs themselves, possibly denoting antigen transfer. In later stages, extensive islet destruction coincides with preferential antigen presentation to, and activation of, CD8+ T cells. Throughout the process, Tregs patrol the active compartments, consistent with the notion that they control the activation of many cell types.


2006 ◽  
Vol 176 (9) ◽  
pp. 5455-5462 ◽  
Author(s):  
Hanspeter Waldner ◽  
Raymond A. Sobel ◽  
Nichole Price ◽  
Vijay K. Kuchroo

2003 ◽  
Vol 198 (7) ◽  
pp. 1103-1106 ◽  
Author(s):  
Irina Apostolou ◽  
Zhenyue Hao ◽  
Klaus Rajewsky ◽  
Harald von Boehmer

In type 1 diabetes, autoimmune T cells cause destruction of pancreatic β cells by largely unknown mechanism. Previous analyses have shown that β cell destruction is delayed but can occur in perforin-deficient nonobese diabetic (NOD) mice and that Fas-deficient NOD mice do not develop diabetes. However, because of possible pleiotropic functions of Fas, it was not clear whether the Fas receptor was an essential mediator of β cell death in type 1 diabetes. To directly test this hypothesis, we have generated a β cell–specific knockout of the Fas gene in a transgenic model of type 1 autoimmune diabetes in which CD4+ T cells with a transgenic TCR specific for influenza hemagglutinin (HA) are causing diabetes in mice that express HA under control of the rat insulin promoter. Here we show that the Fas-deficient mice develop autoimmune diabetes with slightly accelerated kinetics indicating that Fas-dependent apoptosis of β cells is a dispensable mode of cell death in this disease.


2020 ◽  
Author(s):  
Ada Admin ◽  
Fernanda M. C. Sodré ◽  
Samal Bissenova ◽  
Ylke Bruggeman ◽  
Ronak Tilvawala ◽  
...  

Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated GRP78 and reduced spontaneous NETosis of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate, characterized by reduced frequencies of effector memory CD4<sup>+</sup> T cells and a modest reduction in the frequency of IFNγ-producing CD4<sup>+</sup> and CD8<sup>+</sup> T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes.


Author(s):  
Maurílio Bonora Júnior ◽  
Alessandro dos Santos Farias ◽  
Carolina Francelin Rovarotto ◽  
Fernando Pradela

Type 1 Diabetes Mellitus is an autoimmune disease characterized by the destruction of the pancreatic beta cells by the action of autoreactive T cells. Using Non Obese Diabetic (NOD) mice, expression of cytotoxicity-related molecules on CD4 + helper T cells in the pancreas and peripancreatic lymph node of diabetic animals was observed. However, unlike what has been seen in the EAE model, the expression of one of the major cytotoxic molecules is similar in both organs, while two others express much more in the target organ of diabetes than in the draining lymph node.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yangfan Xiao ◽  
Chao Deng ◽  
Zhiguang Zhou

Although type 1 diabetes is thought to be an organ-specific autoimmune disease, mediated by effective CD4+ and CD8+ T cells, it has recently become clear that B cells participate in the initiation and progress of this disease. Indeed, B cell deletion can prevent or reverse autoimmune diabetes in nonobese diabetic mice and even result in partially remaining β cell function in patients with new-onset type 1 diabetes. This review summarizes the dual role of B cells in this process not only of pathogenic effect but also of immunoregulatory function in type 1 diabetes. We focus on the impact that B cells have on regulating the activation, proliferation, and cytokine production of self-reactive T cells along with regulatory T cells, with the aim of providing a better understanding of the interactions between T and B cells in immunopathogenesis and improving the efficacy of interventions for clinical practice.


Sign in / Sign up

Export Citation Format

Share Document