scholarly journals The KCNJ11-E23K Gene Variant Hastens Diabetes Progression by Impairing Glucose-Induced Insulin Secretion

2021 ◽  
Author(s):  
Gregor Sachse ◽  
Elizabeth Haythorne ◽  
Thomas Hill ◽  
Peter Proks ◽  
Russell Joynson ◽  
...  

The ATP-sensitive potassium (K<sub>ATP</sub>) channel controls blood glucose levels by coupling glucose metabolism to insulin secretion in pancreatic beta cells. E23K, a common polymorphism in the pore-forming K<sub>ATP</sub> channel subunit (<i>KCNJ11)</i> gene, has been linked to increased risk of type 2 diabetes. Understanding the risk-allele-specific pathogenesis has the potential to improve personalized diabetes treatment, but the underlying mechanism has remained elusive. Using a genetically engineered mouse model, we now show that the K23 variant impairs glucose-induced insulin secretion and increases diabetes risk when combined with a high fat diet (HFD) and obesity. K<sub>ATP</sub>-channels in beta cells with two K23 risk alleles (KK) showed decreased ATP inhibition and the threshold for glucose-stimulated insulin secretion from KK islets was increased. Consequently, the insulin response to glucose and glycaemic control were impaired in KK mice on a standard diet. On a HFD, the effects of the KK genotype were exacerbated, accelerating diet-induced diabetes progression and causing beta cell failure. We conclude that the K23 variant increases diabetes risk by impairing insulin secretion at threshold glucose levels, thus accelerating loss of beta cell function in the early stages of diabetes progression.

2021 ◽  
Author(s):  
Gregor Sachse ◽  
Elizabeth Haythorne ◽  
Thomas Hill ◽  
Peter Proks ◽  
Russell Joynson ◽  
...  

The ATP-sensitive potassium (K<sub>ATP</sub>) channel controls blood glucose levels by coupling glucose metabolism to insulin secretion in pancreatic beta cells. E23K, a common polymorphism in the pore-forming K<sub>ATP</sub> channel subunit (<i>KCNJ11)</i> gene, has been linked to increased risk of type 2 diabetes. Understanding the risk-allele-specific pathogenesis has the potential to improve personalized diabetes treatment, but the underlying mechanism has remained elusive. Using a genetically engineered mouse model, we now show that the K23 variant impairs glucose-induced insulin secretion and increases diabetes risk when combined with a high fat diet (HFD) and obesity. K<sub>ATP</sub>-channels in beta cells with two K23 risk alleles (KK) showed decreased ATP inhibition and the threshold for glucose-stimulated insulin secretion from KK islets was increased. Consequently, the insulin response to glucose and glycaemic control were impaired in KK mice on a standard diet. On a HFD, the effects of the KK genotype were exacerbated, accelerating diet-induced diabetes progression and causing beta cell failure. We conclude that the K23 variant increases diabetes risk by impairing insulin secretion at threshold glucose levels, thus accelerating loss of beta cell function in the early stages of diabetes progression.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0241349
Author(s):  
Sajid Ali Rajput ◽  
Munazza Raza Mirza ◽  
M. Iqbal Choudhary

Beta cell apoptosis induced by proinflammatory cytokines is one of the hallmarks of diabetes. Small molecules which can inhibit the cytokine-induced apoptosis could lead to new drug candidates that can be used in combination with existing therapeutic interventions against diabetes. The current study evaluated several effects of bergenin, an isocoumarin derivative, in beta cells in the presence of cytokines. These included (i) increase in beta cell viability (by measuring cellular ATP levels) (ii) suppression of beta cell apoptosis (by measuring caspase activity), (iii) improvement in beta cell function (by measuring glucose-stimulated insulin secretion), and (iv) improvement of beta cells mitochondrial physiological functions. The experiments were carried out using rat beta INS-1E cell line in the presence or absence of bergenin and a cocktail of proinflammatory cytokines (interleukin-1beta, tumor necrosis factor-alpha, and interferon- gamma) for 48 hr. Bergenin significantly inhibited beta cell apoptosis, as inferred from the reduction in the caspase-3 activity (IC50 = 7.29 ± 2.45 μM), and concurrently increased cellular ATP Levels (EC50 = 1.97 ± 0.47 μM). Bergenin also significantly enhanced insulin secretion (EC50 = 6.73 ± 2.15 μM) in INS-1E cells, presumably because of the decreased nitric oxide production (IC50 = 6.82 ± 2.83 μM). Bergenin restored mitochondrial membrane potential (EC50 = 2.27 ± 0.83 μM), decreased ROS production (IC50 = 14.63 ± 3.18 μM), and improved mitochondrial dehydrogenase activity (EC50 = 1.39 ± 0.62 μM). This study shows for the first time that bergenin protected beta cells from cytokine-induced apoptosis and restored insulin secretory function by virtue of its anti-inflammatory, antioxidant and anti-apoptotic properties. To sum up, the above mentioned data highlight bergenin as a promising anti-apoptotic agent in the context of diabetes.


2018 ◽  
Vol 52 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Eiji Yamato

Abstract Objective. Histone deacytylase inhibitors (HDACis) inhibit the deacetylation of the lysine residue of proteins, including histones, and regulate the transcription of a variety of genes. Recently, HDACis have been used clinically as anti-cancer drugs and possible anti-diabetic drugs. Even though HDACis have been proven to protect the cytokine-induced damage of pancreatic beta cells, evidence also shows that high doses of HDACis are cytotoxic. In the present study, we, therefore, investigated the eff ect of HDACis on insulin secretion in a pancreatic beta cell line. Methods. Pancreatic beta cells MIN6 were treated with selected HDACis (trichostatin A, TSA; valproic acid, VPA; and sodium butyrate, NaB) in medium supplemented with 25 mM glucose and 13% heat-inactivated fetal bovine serum (FBS) for indicated time intervals. Protein expression of Pdx1 and Mafa in MIN6 cells was demonstrated by immunohistochemistry and immunocytochemistry, expression of Pdx1 and Mafa genes was measured by quantitative RT-PCR method. Insulin release from MIN6 cells and insulin cell content were estimated by ELISA kit. Superoxide production in MIN6 cells was measured using a Total ROS/Superoxide Detection System. Results. TSA, VPA, and NaB inhibited the expression of Pdx1 and Mafa genes and their products. TSA treatment led to beta cell malfunction, characterized by enhanced insulin secretion at 3 and 9 mM glucose, but impaired insulin secretion at 15 and 25 mM glucose. Th us, TSA induced dysregulation of the insulin secretion mechanism. TSA also enhanced reactive oxygen species production in pancreatic beta cells. Conclusions. Our results showed that HDACis caused failure to suppress insulin secretion at low glucose concentrations and enhance insulin secretion at high glucose concentrations. In other words, when these HDACis are used clinically, high doses of HDACis may cause hypoglycemia in the fasting state and hyperglycemia in the fed state. When using HDACis, physicians should, therefore, be aware of the capacity of these drugs to modulate the insulin secretory capacity of pancreatic beta cells.


Endocrinology ◽  
2020 ◽  
Author(s):  
Bareket Daniel ◽  
Ariela Livne ◽  
Guy Cohen ◽  
Shirin Kahremany ◽  
Shlomo Sasson

Abstract Insulin secretion from pancreatic beta cells is tightly regulated by glucose and paracrine signals within the microenvironment of islets of Langerhans. Extracellular matrix from islet microcapillary endothelial cells (IMEC) affect beta-cell spreading and amplify insulin secretion. This study was aimed at investigating the hypothesis contact-independent paracrine signals generated from IMEC may also modulate beta-cell insulin secretory functions. For this purpose, conditioned medium (CMp) preparations were prepared from primary cultures of rat IMEC and were used to simulate contact-independent beta cell-endothelial cell communication. GSIS assays were then performed on freshly isolated rat islets and the INS-1E insulinoma cell line, followed by fractionation of the CMp, mass-spectroscopic identification of the factor, and mechanism of action characterization. The IMEC-derived CMp markedly attenuated first- and second-phase GSIS in a time- and dose-dependent manner without altering cellular insulin content and cell viability. Size-exclusion fractionation, chromatographic and mass-spectroscopic analyses of the CMp identified the attenuating factor as the enzyme Triosephosphate Isomerase (TPI). An antibody against TPI abrogated the attenuating activity of the CMp while recombinant human TPI (hTPI) attenuated GSIS from beta cells. This effect was reversed in the presence of tolbutamide in the GSIS assay. In silico docking simulation identified regions on TPI dimer that were important for potential interactions with the extracellular epitopes of the sulfonylurea receptor in the complex. This study supports the hypothesis that an effective paracrine interaction exists between IMEC and beta cells and modulates glucose-induced insulin secretion via TPI- sulfonylurea receptor- KATP channel (SUR1-Kir6.2) complex attenuating interactions.


1999 ◽  
Vol 22 (2) ◽  
pp. 113-123 ◽  
Author(s):  
T Miki ◽  
K Nagashima ◽  
S Seino

ATP-sensitive K+ channels (KATP channels) play important roles in many cellular functions by coupling cell metabolism to electrical activity. The KATP channels in pancreatic beta-cells are thought to be critical in the regulation of glucose-induced and sulfonylurea-induced insulin secretion. Until recently, however, the molecular structure of the KATP channel was not known. Cloning members of the novel inwardly rectifying K+ channel subfamily Kir6.0 (Kir6.1 and Kir6.2) and the sulfonylurea receptors (SUR1 and SUR2) has clarified the molecular structure of KATP channels. The pancreatic beta-cell KATP channel comprises two subunits: a Kir6.2 subunit and an SUR1 subunit. Molecular biological and molecular genetic studies have provided insights into the physiological and pathophysiological roles of the pancreatic beta-cell KATP channel in insulin secretion.


ChemTexts ◽  
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Sigurd Lenzen

AbstractThe biosynthesis of insulin takes place in the insulin-producing beta cells that are organized in the form of islets of Langerhans together with a few other islet cell types in the pancreas organ. The signal for glucose-induced insulin secretion is generated in two pathways in the mitochondrial metabolism of the pancreatic beta cells. These pathways are also known as the triggering pathway and the amplifying pathway. Glucokinase, the low-affinity glucose-phosphorylating enzyme in beta cell glycolysis acts as the signal-generating enzyme in this process. ATP ultimately generated is the crucial second messenger in this process. Insulin-producing pancreatic beta cells are badly protected against oxidative stress resulting in a particular vulnerability of this islet cell type due to low expression of H2O2-inactivating enzymes in various subcellular locations, specifically in the cytosol, mitochondria, peroxisomes and endoplasmic reticulum. This is in contrast to the glucagon-producing alpha cells and other islet cell types in the islets that are well equipped with these H2O2-inactivating enzymes. On the other hand the membranes of the pancreatic beta cells are well protected against lipid peroxidation and ferroptosis through high level expression of glutathione peroxidase 4 (GPx4) and this again is at variance from the situation in the non-beta cells of the islets with a low expression level of GPx4. The weak antioxidative defence equipment of the pancreatic beta cells, in particular in states of disease, is very dangerous because the resulting particular vulnerability endangers the functionality of the beta cells, making people prone to the development of a diabetic metabolic state.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1474
Author(s):  
Shiau-Mei Chen ◽  
Siow-Wey Hee ◽  
Shih-Yun Chou ◽  
Meng-Wei Liu ◽  
Che-Hong Chen ◽  
...  

Chronic hyperglycemia and hyperlipidemia hamper beta cell function, leading to glucolipotoxicity. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) detoxifies reactive aldehydes, such as methylglyoxal (MG) and 4-hydroxynonenal (4-HNE), derived from glucose and lipids, respectively. We aimed to investigate whether ALDH2 activators ameliorated beta cell dysfunction and apoptosis induced by glucolipotoxicity, and its potential mechanisms of action. Glucose-stimulated insulin secretion (GSIS) in MIN6 cells and insulin secretion from isolated islets in perifusion experiments were measured. The intracellular ATP concentrations and oxygen consumption rates of MIN6 cells were assessed. Furthermore, the cell viability, apoptosis, and mitochondrial and intracellular reactive oxygen species (ROS) levels were determined. Additionally, the pro-apoptotic, apoptotic, and anti-apoptotic signaling pathways were investigated. We found that Alda-1 enhanced GSIS by improving the mitochondrial function of pancreatic beta cells. Alda-1 rescued MIN6 cells from MG- and 4-HNE-induced beta cell death, apoptosis, mitochondrial dysfunction, and ROS production. However, the above effects of Alda-1 were abolished in Aldh2 knockdown MIN6 cells. In conclusion, we reported that the activator of ALDH2 not only enhanced GSIS, but also ameliorated the glucolipotoxicity of beta cells by reducing both the mitochondrial and intracellular ROS levels, thereby improving mitochondrial function, restoring beta cell function, and protecting beta cells from apoptosis and death.


2021 ◽  
Author(s):  
Nai-Wen Chi ◽  
Travis Eisemann ◽  
Tsung-Yin J Yeh ◽  
Swati Roy ◽  
Tyler J Chi ◽  
...  

Insulin secretion in the pancreatic beta cell is rate-limited by glucokinase (GCK), the glucose sensor that catalyzes the first step of glucose metabolism. GCK consists of two lobes connected by a flexible hinge that allows the kinase to sample a spectrum of conformations ranging from the active, closed form to several inactive, less-compact forms. Activating GCK mutations can cause hyperinsulinemia and hypoglycemia in infants. A similar phenotype is exhibited in mice deficient in tankyrase (TNKS), prompting us to investigate whether TNKS might modulate the glucose-sensing function of GCK. We found that TNKS colocalizes and directly interacts with GCK. Their interaction is mediated by two ankyrin-repeat clusters (ARC-2 and -5) in TNKS and a tankyrase-binding motif (TBM, aa 63-68) in the GCK hinge. This interaction is conformation sensitive: human GCK variants that cause hyperglycemia (V62M) or hypoglycemia (S64Y) enhance or diminish the interaction respectively, even though they have no impact on TNKS interaction in the context of a GCK peptide (V62M) or a peptide library (S64Y). Moreover, the TNKS-GCK interaction is inhibited by high concentrations of glucose, which are known to stabilize GCK in the active (closed, glucose-avid) conformation. Conversely, glucose phosphorylation by GCK in vitro is inhibited by TNKS. To validate this in vitro inhibitory effect in the MIN6 beta cells, we showed that glucose-stimulated insulin secretion is suppressed upon stabilization of the TNKS protein and conversely is enhanced upon TNKS knockdown. Based on these findings as well as by contrasting with hexokinase-2, we propose that TNKS is a physiological GCK inhibitor in pancreatic beta cells that acts by trapping the kinase in an open (inactive) conformation.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Alessandra Puddu ◽  
Roberta Sanguineti ◽  
Fabrizio Montecucco ◽  
Giorgio Luciano Viviani

Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone produced in the gastrointestinal tract that stimulates glucose dependent insulin secretion. Impaired incretin response has been documented in diabetic patients and was mainly related to the inability of the pancreatic beta cells to secrete insulin in response to GIP. Advanced Glycation End Products (AGEs) have been shown to play an important role in pancreatic beta cell dysfunction. The aim of this study is to investigate whether the exposure to AGEs can induce GIP resistance in the pancreatic beta cell line HIT-T15. Cells were cultured for 5 days in low (CTR) or high glucose (HG) concentration in the presence of AGEs (GS) to evaluate the expression of GIP receptor (GIPR), the intracellular signaling activated by GIP, and secretion of insulin in response to GIP. The results showed that incubation with GS alone altered intracellular GIP signaling and decreased insulin secretion as compared to CTR. GS in combination with HG reduced the expression of GIPR and PI3K and abrogated GIP-induced AKT phosphorylation and GIP-stimulated insulin secretion. In conclusion, we showed that treatment with GS is associated with the loss of the insulinotropic effect of GIP in hyperglycemic conditions.


Sign in / Sign up

Export Citation Format

Share Document