Influence of Different CAM Strategies on the Fit of Partial Crown Restorations: A Digital Three-dimensional Evaluation

2018 ◽  
Vol 43 (5) ◽  
pp. 530-538 ◽  
Author(s):  
M Zimmermann ◽  
A Valcanaia ◽  
G Neiva ◽  
A Mehl ◽  
D Fasbinder

ABSTRACT Objective: CAM fabrication is an important step within the CAD/CAM process. The internal fit of restorations is influenced by the accuracy of the subtractive CAM procedure. Little is known about how CAM strategies might influence the fit of CAD/CAM fabricated restorations. The aim of this study was to three-dimensionally evaluate the fit of CAD/CAM fabricated zirconia-reinforced lithium silicate ceramic partial crowns fabricated with three different CAM strategies. The null hypothesis was that different CAM strategies did not influence the fitting accuracy of CAD/CAM fabricated zirconia-reinforced lithium silicate ceramic partial crowns. Methods and Materials: Preparation for a partial crown was performed on a maxillary right first molar on a typodont. A chairside CAD/CAM system with the intraoral scanning device CEREC Omnicam (Dentsply Sirona, York, PA, USA) and the 3+1 axis milling unit CEREC MCXL was used. There were three groups with different CAM strategies: step bur 12 (12), step bur 12S (12S), and two step-mode (12TWO). The zirconia-reinforced lithium silicate ceramic Celtra Duo (Dentsply Sirona) was used as the CAD/CAM material. A new 3D method for evaluating the fit was applied, consisting of the quadrant scan with the intraoral scanning device CEREC Omnicam. The scan of the PVS material adherent to the preparation and the preparation scan were matched, and the difference analysis was performed with special software OraCheck (Cyfex AG, Zurich, Switzerland). Three areas were selected for analysis: margin (MA), axial (AX), and occlusal (OC). Statistical analysis was performed using 80% percentile, one-way ANOVA, and the post hoc Scheffé test with α=0.05. Results: Statistically significant differences were found both within and between the test groups. The aspect axial fit results varied from 90.5 ± 20.1 μm for the two-step milling mode (12TWO_AX) to 122.8 ± 12.2 μm for the milling with step bur 12S (12S_AX). The worst result in all groups was found for the aspect occlusal fit with the highest value for group 12S of 222.8 ± 35.6 μm. Group two-step milling mode (12TWO) performed statistically significantly better from groups 12 and 12S for the occlusal fit (p<0.05). Deviation patterns were visually analyzed with a color-coded scheme for each restoration. Conclusions: CAM strategy influenced the internal adaptation of zirconia-reinforced lithium silicate partial crowns fabricated with a chairside CAD/CAM system. Sensible selection of specific areas of internal adaptation and fit is an important factor for evaluating the CAM accuracy of CAD/CAM systems.

2019 ◽  
Vol 10 (2) ◽  
pp. 120-127
Author(s):  
Sevki Cinar ◽  
Bike Altan ◽  
Gokhan Akgungor

Objective: To compare the bond strength of monolithic CAD-CAM materials to resin cement using different surface treatment methods. Materials and Methods: Lithium disilicate glass ceramic (IPS e-max CAD), zirconia-reinforced lithium silicate ceramic (Vita Suprinity), resin nanoceramic (Lava Ultimate), and hybrid ceramic (Vita Enamic) were used. Five groups of CAD-CAM blocks were treated as follows: control (C), HF etching (HF), HF etching + silanization (HF + S), sandblasting (SB), and sandblasting + silanization (SB + S). After surface treatments, SEM analyses were conducted. Specimens were cemented with self-adhesive resin cement (Theracem) and stored in distilled water at 37°C for 24 h. Shear bond strength (SBS) was measured, and failure types were categorized. Results were analyzed using two-way ANOVA and the post-hoc Tukey test. Results: Statistical analysis revealed significant differences between SBS values obtained for different surface treatments and CAD-CAM block types ( P < .001). Among the CAD-CAM materials, the highest SBS was reported in the HF + S group for Vita Enamic. Although IPS e.max CAD, Vita Suprinity, and Vita Enamic showed higher bond strength when treated with HF + S, Lava Ultimate has the highest bond strength value when treated with SB + S. Conclusions: The bond strength of CAD-CAM materials was influenced by surface treatment. Additionally, silanization significantly improved the bond strength of all materials except Lava Ultimate.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Sven Rinke ◽  
Anne-Kathrin Pabel ◽  
Matthias Rödiger ◽  
Dirk Ziebolz

The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS) ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM) of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa), optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow.


Author(s):  
Khaled E. Ahmed

The potential applications of computer-aided design/computer-aided manufacturing (CAD/CAM) and intraoral scanning exceed the delivery of standard prosthodontic interventions. The aim of this study was to clinically present a developed assessment technique, that relies on the use of sequential intraoral scanning, three-dimensional superimposition, and 2D and 3D deviation analyses based on a standardised protocol, as an auxiliary tool in monitoring dimensional changes of residual ridge post-extraction with a follow-up period of four months.


2016 ◽  
Vol 8 (1) ◽  
pp. 12-15
Author(s):  
Repala R Navya ◽  
GB Shivamurthy

ABSTRACT Aim The success of the root canal treatment mainly depends upon the three-dimensional obturation of the root canal system. The purpose of this study is to compare the sealing ability of biodentine, mineral trioxide aggregate (MTA), and glass ionomer cement (GIC). Materials and methods Teeth were obturated with gutta-percha using AH PLUS sealer in all groups. The intracanal sealing material used in group I was GIC, group II was MTA, and group III was biodentine. The specimens were longitudinally sectioned. Coronal microleakage was determined under a stereomicroscope using 15× magnification. Data were statistically analyzed using one-way analysis of variance followed by post hoc multiple comparisons (Bonferroni). Results Biodentine group leaked significantly less than the GIC group (p < 0.05). The sealing ability of biodentine was better than that of MTA, but the difference was not statistically significant. Conclusion Biodentine or MTA may be preferred over GIC as an intracanal barrier. Clinical significance Biodentine or MTA can be used in areas where an impervious seal has to be obtained. They can also be used to seal the perforations in the coronal middle and apical thirds of the root canal. These materials have an ability to form a barrier during apexification procedures. How to cite this article Navya RR, Shivamurthy GB. Comparing the Sealing Ability of Contemporary Restorative Materials. CODS J Dent 2016;8(1):12-15.


2015 ◽  
Vol 113 (5) ◽  
pp. 355-359 ◽  
Author(s):  
Leonardo Fernandes da Cunha ◽  
Eduardo Mukai ◽  
Raphael Meneghetti Hamerschmitt ◽  
Gisele Maria Correr

2020 ◽  
Vol 23 (4) ◽  
pp. 9p
Author(s):  
Manar Ahmed El-Mahdy ◽  
Ahmed Khaled Aboelfadl ◽  
Marwa Mohamed Wahsh

ABSTRACTObjective: The purpose of this in vitro study was to evaluate the marginal fit of laminate veneers made of zirconia-reinforced lithium silicate with two thicknesses using different CAD/CAM systems. Material and methods: 42 Laminate veneers milled from zirconia-reinforced lithium silicate were divided into three main groups according to milling machine used into: group X5, laminate veneers fabricated by inLab MCX5 milling machine; group CM, laminate veneers fabricated by Ceramill motion 2; and group XL, laminate veneers fabricated by inLab MCXL. Each group was divided into two subgroups according to veneer thickness into: subgroup I, 0.5 mm thickness laminate veneers and subgroup II, 0.3 mm thickness laminate veneers. The marginal fit was measured using stereomicroscope. The results were tabulated and statistically analyzed using two-way ANOVA test followed by Tukey’s post hoc test. Comparisons of main and simple effects were done utilizing Bonferroni correction (P ? 0.05). Results: The mean (±SD) highest marginal discrepancy was recorded in subgroup BII at 85.45±1.82 µm while the least mean marginal discrepancy was recorded in subgroup AI 71.24±2.64 µm. Conclusion: Both thicknesses (0.5 mm thickness and 0.3 mm thickness) and all tested CAD/CAM systems produced zirconia-reinforced lithium silicate laminate veneers with clinically acceptable marginal gaps; however, the closed CAD/CAM systems produced veneers with superior marginal fit than open systems at 0.3 mm thickness. The CAD/CAM system with the 5-axis milling machine produced the best marginal fit with 0.5 mm thickness. KEYWORDS Marginal fit; Zirconia-reinforced lithium silicate; Laminate veneers; CAD/CAM; Milling machines. RESUMOObjetivo: O objetivo deste estudo in vitro foi avaliar a adaptação marginal de facetas laminadas de silicato de lítio reforçado com zircônia com duas espessuras, utilizando diferentes sistemas CAD / CAM. Material e métodos: 42 facetas laminadas fresadas a partir de silicato de lítio reforçado com zircônia foram divididos em três grupos principais de acordo com a fresadora usada em: grupo X5, facetas laminadas fabricados pela fresadora inLab MCX5; grupo CM, facetas laminadas fabricados por Ceramill motion 2; e grupo XL, facetas laminadas fabricados pelo inLab MCXL. Cada grupo foi dividido em dois subgrupos, de acordo com a espessura do laminado, em: subgrupo I, facetas laminadas com 0,5 mm de espessura e subgrupo II, facetas laminadas com espessura de 0,3 mm. A adaptação marginal foi medida usando estereomicroscópio. Os resultados foram tabulados e analisados estatisticamente usando o teste ANOVA de dois fatores seguido pelo teste post hoc de Tukey. Comparações dos efeitos principais e simples foram realizadas utilizando a correção de Bonferroni (P ?0,05). Resultados: A maior discrepância marginal média (± DP) foi registrada no subgrupo BII em 85,45 ± 1,82 µm, enquanto a menor discrepância marginal média foi registrada no subgrupo AI 71,24 ± 2,64 µm. Conclusão: Ambas as espessuras (0,5 mm e 0,3 mm) e todos os sistemas CAD / CAM testados produziram facetas de laminado de silicato de lítio reforçadas com zircônia com lacunas clinicamente aceitáveis. No entanto, os sistemas CAD / CAM fechados produziam facetas com adaptação marginal superior aos sistemas abertos com 0,3 mm de espessura. O sistema CAD / CAM com a fresadora de 5 eixos produziu a melhor adaptação marginal com 0,5 mm de espessura.PALAVRAS-CHAVE Adaptação marginal; Silicato de lítio reforçado com zircônia; Facetas laminados; CAD / CAM; Fresadoras.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Amirhesam Amini ◽  
Somayeh Zeighami ◽  
Safoura Ghodsi

Purpose. This study aimed to compare marginal and internal adaptation in endocrowns made from translucent zirconia and zirconium lithium silicate using CAD-CAM technology. Materials and Methods. Twenty-eight freshly extracted upper molars were mounted in acrylic resin and underwent root canal therapy and endocrown preparation up to 2 mm above the cementoenamel junction. Endocrowns were CAD-CAM milled from zirconium lithium silicate (ZLS) and translucent zirconia (Zr). Internal and marginal adaptation was assessed by the replica technique before cementation. Marginal adaptation was evaluated by a stereomicroscope (×32) before and after cementation and also after thermomechanical aging. Results. The ZLS group showed significantly higher internal adaptation compared to the Zr group ( P  = 0.028), while the marginal adaptation differences, at different times with different methods, were not statistically significant ( P  > 0.05). Axiomarginal angle had the highest and axiopulpal angle showed the lowest adaptation in both groups. The cementation process and thermomechanical aging increased the marginal gap in both groups significantly ( P  < 0.001). The marginal gap assessed by the replica technique before cementation was 7.11 µm higher than direct view under a stereomicroscope with intraclass correlation coefficient of 0.797. Conclusion. Zirconia seems to be an acceptable material for endocrown with comparable internal and marginal adaptation to ZLS. Cementation and thermomechanical aging had significantly negative effects on marginal gap. The marginal gap assessed by the replica technique was higher than direct view under the stereomicroscope technique.


2021 ◽  
Vol 11 (22) ◽  
pp. 10709
Author(s):  
Gil Ben-Izhack ◽  
Asaf Shely ◽  
Sarit Naishlos ◽  
Ari Glikman ◽  
Liad Frishman ◽  
...  

Background: This study compared the influence of three different radial spacers (60,90,120 microns) on the marginal gap adaptation by using computer-aided manufacturing (CAD-CAM) for producing monolithic zirconia reinforced lithium silicate (ZLS) ceramic crowns. Methods: A total of 45 abutment acrylic teeth were divided into three groups of different radial spacers (60, 90, and 120 microns). In each group 15 teeth were scanned by Omnicam intra oral scanner and ZLS crowns were ground. For each unit the marginal gap was evaluated at four regions of interest by scanning electronic microscope (SEM). To compare the marginal gap between the three groups a one-way ANOVA with post-hoc Bonferroni test was preformed (α = 0.05). Results: The marginal gap for a 60 microns (162.99 ± 16.25 µm) radial spacer was found significantly higher than 90 (41.85 ± 3.57 µm) and 120 (41.85 ± 5.3 µm) microns radial spacers (p < 0.05). Between 90- and 120-micron radial spacers no difference was obtained. (p < 0.05). Conclusions: A radial spacer of 60 microns showed a significantly higher marginal gap compared to 90 and 120 microns and was not clinically accepted (>120 microns). For both 90 and 120 microns the marginal gap was clinically accepted (<120 microns) with no difference between the groups. The radial spacer which should be optimum for CELTRA® DUO crowns is 90 microns.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Sven Rinke ◽  
Matthias Rödiger ◽  
Dirk Ziebolz ◽  
Anne-Kathrin Schmidt

This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4680
Author(s):  
Seen-Young Kang ◽  
Ji-Min Yu ◽  
Jun-Seok Lee ◽  
Ki-Sook Park ◽  
Seung-Youl Lee

This study aimed to analyze the milling accuracy of lithium disilicate and zirconia-reinforced silicate crown fabricated using chairside computer-aided design/manufacturing (CAD/CAM) system. Mandibular left first premolar was selected for abutment. A master model was obtained for digital impression using an intraoral scanner, and crowns were designed using a CAD software design program. Amber Mill (AM), IPS e max CAD (IPS), and CELTRA DUO (CEL) were used in the CAD/CAM system, and a total 45 crowns (15 crowns each for AM, IPS, and CEL) was fabricated. Milling accuracy was analyzed with respect to trueness, measured by superimposing CAD design data and scan data through a three-dimensional program to compare the outer and inner surfaces and internal and external parts, thereby acquiring both quantitative and qualitative data. Data were analyzed using the non-parametric test and Kruskal–Wallis H test. In addition, the Mann–Whitney U test was used by applying the level of significance (0.05/3 = 0.016) adjusted by post-analysis Bonferroni correction. All the measured parts of the lithium disilicate and zirconia-reinforced silicate crowns showed statistically significant differences (p < 0.05). The lithium disilicate (AM and IPS) materials showed superior milling accuracy than the zirconia-reinforced lithium silicate (CEL) materials.


Sign in / Sign up

Export Citation Format

Share Document