Influence of Different Cordless Light-emitting-diode Units and Battery Levels on Chemical, Mechanical, and Physical Properties of Composite Resin

2019 ◽  
Vol 45 (4) ◽  
pp. 377-386 ◽  
Author(s):  
IO Cardoso ◽  
AC Machado ◽  
DNR Teixeira ◽  
FC Basílio ◽  
A Marletta ◽  
...  

Clinical Relevance Irradiance may decrease as the light-emitting diode (LED) is discharged. Therefore, the LED must be charged carefully to prevent the possibility of influencing the chemical, mechanical, and physical properties of composite resin. SUMMARY The aim of this study was to evaluate the influence of different light-emitting diode (LED) curing units and battery levels on the chemical, mechanical, and physical properties of composite resins. The irradiance for each cycle from full to completely discharged battery level was evaluated, for five different new cordless LED units: Optilight Color (Gnatus), Bluephase (Ivoclar), Valo (Ultradent), Radii Plus (SDI), and Radii Xpert (SDI). After the irradiance evaluation, composite resin specimens were prepared and light cured, while varying the battery level for each LED unit: high level (HL, 100%), medium level (ML, 50%), and low level (LL, 10%). The degree of conversion, diametral tensile strength, sorption, and solubility were also evaluated. Data were checked for homoscedasticity and submitted to two-way and three-way analysis of variance, depending on the test performed, followed by the Tukey test with a significance level of 95%. A negative correlation was found between irradiance and cycles of light curing, which was checked by the Pearson correlation test. Valo and Radii Xpert were not influenced by the battery level in any test performed. However, different battery levels for some LED units can influence the degree of conversion, diametral tensile strength, sorption, and solubility of composite resins.

2016 ◽  
Vol 41 (4) ◽  
pp. 409-416 ◽  
Author(s):  
AG Pereira ◽  
LHA Raposo ◽  
DNR Teixeira ◽  
RCQ Gonzaga ◽  
IO Cardoso ◽  
...  

SUMMARY The properties of composite resins can be influenced by light activation, depending primarily on the performance of the curing unit. The aim of this study was to evaluate how different battery levels of a cordless light-emitting diode (LED) unit influence the properties of a nanofilled composite resin. First, the battery voltage and light intensity of the cordless LED unit were individually checked for all light-curing cycles. Then, composite resin discs were prepared and light-cured at different battery levels: high level (HL, 100%), medium level (ML, 50%), and low level (LL, 10%). The degree of conversion, diametral tensile strength, sorption, and solubility of the specimens were tested. Data were checked for homoscedasticity and submitted to one-way analysis of variance followed by Tukey honestly significant difference and Pearson correlation tests (p<0.05). The battery voltage and light intensity varied significantly among the groups (p<0.001). The LL group presented a lower degree of conversion than the HL and ML groups (p<0.001), which shower similar results (p=0.182). Lower diametral tensile strength was also verified for the LL group when compared with the HL and ML groups (p<0.001), which presented no difference (p=0.052). Positive correlation was observed between the light intensity and the parameters studied, with the exception of sorption and solubility (p<0.001). The ML and LL groups showed higher sorption than the HL group (p <0.001), but no difference was verified between the first two groups (p=0.535). No significant differences were found for solubility between the ML and LL groups (p=0.104), but the HL group presented lower values (p<0.001). The different battery levels of the cordless LED curing unit influenced all the properties of the nanofilled composite resin evaluated.


2019 ◽  
Vol 44 (3) ◽  
pp. E133-E144 ◽  
Author(s):  
AO Al-Zain ◽  
GJ Eckert ◽  
JA Platt

SUMMARY Objectives: To investigate the influence of curing distance on the degree of conversion (DC) of a resin-based composite (RBC) when similar radiant exposure was achieved using six different light-curing units (LCUs) and to explore the correlation among irradiance, radiant exposure, and DC. Methods and Materials: A managing accurate resin curing-resin calibrator system was used to collect irradiance data for both top and bottom specimen surfaces with a curing distance of 2 mm and 8 mm while targeting a consistent top surface radiant exposure. Square nanohybrid-dual-photoinitiator RBC specimens (5 × 5 × 2 mm) were cured at each distance (n=6/LCU/distance). Irradiance and DC (micro-Raman spectroscopy) were determined for the top and bottom surfaces. The effect of distance and LCU on irradiance, radiant exposure, and DC as well as their linear associations were analyzed using analysis of variance and Pearson correlation coefficients, respectively (α=0.05). Results: While maintaining a similar radiant exposure, each LCU exhibited distinctive patterns in decreased irradiance and increased curing time. No significant differences in DC values (63.21%-70.28%) were observed between the 2- and 8-mm distances, except for a multiple-emission peak LCU. Significant differences in DC were detected among the LCUs. As expected, irradiance and radiant exposure were significantly lower on the bottom surfaces. However, a strong correlation between irradiance and radiant exposure did not necessarily result in a strong correlation with DC. Conclusions: The RBC exhibited DC values >63% when the top surface radiant exposure was maintained, although the same values were not reached for all lights. A moderate-strong correlation existed among irradiance, radiant exposure, and DC.


2007 ◽  
Vol 8 (6) ◽  
pp. 9-16 ◽  
Author(s):  
Wedad Y. Awliya

Abstract Aim The purpose of this study was to investigate the effect of different temperatures on the efficacy of polymerization during the insertion of composite resin using different light curing units. Methods and Materials A total of 45 disc-shaped specimens were fabricated from Z250 composite resin (3M/ESPE, St. Paul, MN, USA) with 15 each prepared at three different temperatures (refrigerated to 5°C, room temperature at 25°C, and preheated to 37°C). Each of these temperature-controlled specimen groups of 15 were then subdivided into three groups of five specimens, according to the type of curing light used to polymerize them. Curing lights included a conventional halogen light (QTH) in two modes (continuous and softstart polymerization) and a light emitting diode (LED). The microhardness of the top and bottom surfaces of the specimens was determined using a Buehler Micromet II digital microhardness tester (Buehler, Dusseldorf, Germany). Data obtained was analyzed using two-way analysis of variance (ANOVA)/Post Hoc Tukey's test at a 0.05 significance level. Results As the temperature of composite resin increased, the top and bottom microhardness of the specimens also increased regardless of the type of polymerizing light used. The LED light produced a significantly better hardness on top and bottom surfaces of composite resin specimens polymerized at the three different temperatures. Effectiveness of cure at top and bottom surfaces of composite specimens was significantly reduced by using soft-start curing. Conclusion The use of pre-warmed composite resins might help to improve polymerization of composite resin especially at the deeper areas of a restoration which could result in an increase in the expected life of a composite restoration. Citation Awliya WY. The Influence of Temperature on the Efficacy of Polymerization of Composite Resin. J Contemp Dent Pract 2007 September; (8)6:009-016.


2019 ◽  
Vol 45 (4) ◽  
pp. 387-395
Author(s):  
AA Abdulmajeed ◽  
TE Donovan ◽  
R Cook ◽  
TA Sulaiman

Clinical Relevance Bulk-fill composite resins may have comparable mechanical properties to conventional composite resin. Preheating does not reduce the mechanical properties of composite resins. SUMMARY Statement of Problem: Bulk-fill composite resins are increasingly used for direct restorations. Preheating high-viscosity versions of these composites has been advocated to increase flowability and adaptability. It is not known what changes preheating may cause on the mechanical properties of these composite resins. Moreover, the mechanical properties of these composites after mastication simulation is lacking. Purpose: The purpose of this study was to evaluate the effect of fatiguing and preheating on the mechanical properties of bulk-fill composite resin in comparison to its conventional counterpart. Methods and Materials: One hundred eighty specimens of Filtek One Bulk Fill Restorative (FOBR; Bulk-Fill, 3M ESPE) and Filtek Supreme Ultra (FSU; Conventional, 3M ESPE) were prepared for each of the following tests: fracture toughness (International Organization for Standardization, ISO 6872), diametral tensile strength (No. 27 of ANSI/ADA), flexural strength, and elastic modulus (ISO Standard 4049). Specimens in the preheated group were heated to 68°C for 10 minutes and in the fatiguing group were cyclically loaded and thermocycled for 600,000 cycles and then tested. Two-/one-way analysis of variance followed by Tukey Honest Significant Difference (HSD) post hoc test was used to analyze data for statistical significance (α=0.05). Results: Preheating and fatiguing had a significant effect on the properties of both FSU and FOBR. Fracture toughness increased for FOBR specimens when preheated and decreased when fatigued (p=0.016). FOBR had higher fracture toughness value than FSU. Diametral tensile strength decreased significantly after fatiguing for FSU (p=0.0001). FOBR had a lower diametral tensile strength baseline value compared with FSU (p=0.004). Fatiguing significantly reduced the flexural strength of both FSU and FOBR (p=0.011). Preheating had no effect on the flexural strength of either FSU or FOBR. Preheating and fatiguing significantly decreased the elastic modulus of both composite resins equally (p>0.05). Conclusions: Preheating and fatiguing influenced the mechanical properties of composite resins. Both composites displayed similar mechanical properties. Preheating did not yield a major negative effect on their mechanical properties; the clinical implications are yet to be determined.


2013 ◽  
Vol 1 (1) ◽  
pp. 91
Author(s):  
Anderson Catelan ◽  
Caetano Tamires ◽  
Boniek Castillo Dutra Borges ◽  
Giulliana Panfiglio Soares ◽  
Bruno de Castro Ferreira Barreto ◽  
...  

Adequate physical properties of the resinous materials are related to clinical longevity of adhesive restorations. The aim of this investigation was to assess the impact of light-curing source and curing time on the degree of conversion (DC) and Knoop hardness number (KHN) of a composite resin. Circular specimens (5 x 2 mm) were carried out (n = 7) of the Filtek Z250 (3M ESPE) composite. The specimens were light-cured by quartz-halogen-tungsten (QTH) XL 3000 (3M ESPE, 450 mW/cm2) or light-emitting diode (LED) Bluephase 16i (Vivadent, 1390 mW/cm2) for 20, 40, or 60 s. After 24 h, absorption spectra of composite were obtained using Spectrum 100 Optica (Perkin Elmer) FT-IR spectrometer in order to calculate the DC and, KHN was performed in the HMV-2T (Shimadzu) microhardness tester under 50-g load for 15 s dwell time. DC and KHN data were subjected to 2-way ANOVA and Tukey’s test at a pre-set alpha of 0.05. The LED showed highest DC and KHN values than QTH (p < 0.05). The increase of curing time improved the DC and KHN, all curing times with statistical difference (p < 0.05). The use of light-curing units with high irradiance and/or the time of cure increased may improve the physical properties of resin-based materials.


2004 ◽  
Vol 18 (3) ◽  
pp. 266-270 ◽  
Author(s):  
Bianca Micali ◽  
Roberta Tarkany Basting

The clinical performance of composite resins is greatly influenced by the quality of the light-curing unit used. The aim of this study was to compare the efficiency of a commercial light-emitting diode (LED) with that of a halogen-based light-curing unit by means of dye penetration of a micro hybrid composite resin. The composite resin evaluated was Filtek Z250 (3M Dental). The composite was filled into acrylic moulds that were randomly polymerized for 40 seconds by each of the light-emitting systems: light-emitting diode Ultraled (Dabi Atlante) or halogen light Degulux (Degussa Hüls) curing units. Immediately after polymerization, each specimen was individually immersed in 1 ml of 2% methylene blue solution at 37°C ± 2°C. After 24 hours, the specimens were rinsed under running distilled water for 1 minute and stored at 37°C ± 2°C at relative humidity for 24 hours. The composite resins were removed from the moulds and individually triturated before being immersed in new test tubes containing 1 ml of absolute alcohol for 24 hours. The solutions were filtered and centrifuged for 3 minutes at 4,000 rpm and the supernatant was used to determine absorbance in a spectrophotometer at 590 nm. To verify the differences between groups polymerized by LED or halogen light t-test was applied. No significant differences were found between composite resins light-cured by LED or halogen light-curing unit (p > 0.05). The commercially LED-based light-curing unit is as effective to polymerize hybrid composite resins as the halogen-based unit.


2018 ◽  
Vol 21 (3) ◽  
pp. 270
Author(s):  
Thiago Jonathan Silva Dos Santos ◽  
Ana Margarida Dos Santos Melo ◽  
Matheus Dantas Tertulino ◽  
Boniek Castillo Dutra Borges ◽  
Ademir Oliveira Da Silva ◽  
...  

<p><strong>Objective: </strong>This study analyzed the effect of two light emitting diodes (LEDs) on the degree of conversion (DC) of a composite resin for bleached teeth under the influence of adhesives systems used as modeling liquid. <strong>Material and methods: </strong>A total of 60 samples of IPS Empress Direct resin (Ivoclar, Vivadent) in BL-L shade were made in a single increment and polymerized for 20 seconds. The treatments were: 1) Type of adhesive used as modeling liquid (Adper Single Bond 2; the bond component of Adper Scotchbond Multi-Purpose; or no adhesive systems used as modeling liquid were used in the control group); and 2) Type of LED (Bluephase, polywave; and Coltolux, monowave). The DC, percentage of monomers converted to polymer during polymerization, was were evaluated using Fourier Transform Infrared Spectroscopy (FTIR) with 10 scans and wavenumber related to 1/λ for observation of the peaks at 1608 and 1638 cm<sup>-1</sup>. Data were statistically analyzed by two-way analysis of variance (ANOVA) with Tukey's test (<em>p</em>&lt; 0.05). <strong>Results:</strong> There was no statistical difference between LEDs in comparison to the treatments (<em>p</em>&gt; 0.05). However, there was a statistically significant increase in the DC for the adhesive systems tested in comparison to the control group (<em>p</em>&lt; 0.05), with the highest values for Single Bond 2. <strong>Conclusion:</strong> It is concluded that the use of adhesives as modeling liquid of Empress Direct resin for bleached teeth shade increases the degree of conversion of the composite surface, and that curing with both kinds of LEDs does not interfere in this property.</p><p><strong> </strong></p><p><strong>Keywords</strong></p><p><strong></strong>Composite resins; Dentin-bonding agents; Surface properties.</p>


2013 ◽  
Vol 1 (2) ◽  
pp. 134
Author(s):  
Bruno de Castro Ferreira Barreto ◽  
Anderson Catelan ◽  
Ricardo Coelho Okida ◽  
Gisele Fernanda Gonçalves ◽  
Gisele Rodrigues da Silva ◽  
...  

Clinical performance of composite resins depends largely on their mechanical properties, and those are influenced by several factors, such as the light-curing mode. The purpose of this study was to evaluate the influence of different light sources on degree of conversion (DC), Knoop hardness (KHN) and plasticization (P) of a composite resin. Disc-shaped specimens (5 x 2 mm) of Esthet-X (Dentsply) methacrylate-based microhybrid composite were light-cured using quartz-tungsten-halogen (QTH) Optilight Plus (Gnatus) or light-emitting diode (LED) Ultraled (Dabi Atlante) curing units at 400 and 340 mW/cm2 of irradiance, respectively. After 24 h, absorption spectra of composite were obtained using Nexus 670 (Nicolet) FT-IR spectrometer in order to calculate the DC. The KHN was measured in the HMV-2000 (Shimadzu) microhardness tester under 50 g loads for 15 s, and P was evaluated by percentage reduction of hardness after 24 h of alcohol storage. Data were subjected to t-Student test (alpha = 0.05). QTH device showed lower P and higher KHN than LED (p < 0.05), and no difference between the light-curing units was found for DC (p > 0.05). The halogen-curing unit with higher irradiance promoted higher KHN and lower softening in alcohol than LED.


2013 ◽  
Vol 1 (3) ◽  
pp. 240
Author(s):  
Anderson Catelan ◽  
Bruno De Castro Ferreira Barreto ◽  
Thaís Yumi Umeda Suzuki ◽  
Giselle Maria Marchi ◽  
Débora Alves Nunes Leite Lima ◽  
...  

The physical characteristics of composite resins strongly influence their clinical durability. The purpose of this study was to evaluate the influence of different light-emitting diode units on the Knoop hardness (KHN) and plasticization (P) of a composite resin. Disc-shaped specimens (5 x 2 mm) of the Filtek Supreme (3M ESPE) methacrylate-based nanofilled composite were light-cured using second-generation light-emitting diode (LED2) Bluephase 16i (Vivadent) or third-generation (LED3) Ultralume LED 5 (Ultradent) curing units at 1390 and 800 mW/cm2 of irradiance, respectively. After 24 h, KHN was measured with 50-g load for 15 s, and was evaluated by percentage reduction of the hardness after 24 h immersed in absolute alcohol at top and bottom surfaces. Data were subjected ANOVA and Tukey’s test at a pre-set alpha of 0.05. LED2 device showed higher KHN than LED3 (p < 0.05), top surface of composite cured with LED 2 showed higher softening resistance after alcohol storage than bottom surface (p < 0.05), but there was difference on the plasticization values between curing devices and between the top and bottom surface of composite cured with LED3 (p > 0.05). The highest irradiance promoted higher KHN, but overall not affected the plasticization.


Sign in / Sign up

Export Citation Format

Share Document