Tire Energy Loss from Obstacle Impact3

2007 ◽  
Vol 35 (2) ◽  
pp. 141-161 ◽  
Author(s):  
Timothy B. Rhyne ◽  
Steven M. Cron

Abstract Tires in actual service conditions operate on rough roads with a random distribution of obstacles. Rolling resistance, however, is typically measured on smooth surfaces. This paper considers the nature of tire energy loss when impacting obstacles. It is demonstrated by a simple example that translational energy can be “lost,” even in purely elastic impacts, by trapping energy in structural vibrations that cannot return the energy to translation during the restitution phase of the impact. Tire simulations and experiments demonstrate that this dynamic energy loss can be very large in tires if the impact times are short. Impact times indicating the potential for large energy loss are found to be in the range of normal highway speeds.

Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


1995 ◽  
Vol 23 (4) ◽  
pp. 256-265 ◽  
Author(s):  
P. S. Pillai

Abstract Energy loss per hour in a tire traveling at 80 km/h was obtained for a number of tires of different sizes and makes from the respective whole tire hysteresis loss of each tire. This loss value was then compared to the corresponding rolling loss obtained from the 1.7 m dynamometer rolling resistance method. The two methods agreed, indicating that the basic premise of the rolling resistance hysteresis ratio relation is valid.


2018 ◽  
Vol 11 (2) ◽  
pp. 135-145
Author(s):  
Guolin Wang ◽  
Xu Wu ◽  
Chen Liang ◽  
Jian Yang

2021 ◽  
pp. 009524432110290
Author(s):  
Leandro Hernán Esposito ◽  
Angel José Marzocca

The potential replacement of a treated residual aromatic extract mineral oil (TRAE) by a highly epoxidized soybean oil (ESO) into a silica-filled styrene-butadiene rubber compound was investigated. In order to determine if ESO compounds performance are suitable for tread tire applications, processing properties cure and characteristics were evaluated. The impact of ESO amount on the silica dispersion was confirmed by Payne Effect. The presence of chemical or physical interactions between ESO and silica improves the filler dispersion, enabling the compound processability and affecting the cure kinetic rate. An adjusted rubber compound with 2 phr of ESO and 2 phr of sulfur presented the higher stiffness and strength values with lower weight loss from a wear test compared with TRAE compound at an equal amount of oil and curing package. Furthermore, wet grip and rolling resistance predictors of both compounds gave comparable results, maintaining a better performance and reducing the dependence of mineral oil for tire tread compounds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Luis Hernando ◽  
Yuriko Baba ◽  
Elena Díaz ◽  
Francisco Domínguez-Adame

AbstractWe theoretically address the impact of a random distribution of non-magnetic impurities on the electron states formed at the surface of a topological insulator. The interaction of electrons with the impurities is accounted for by a separable pseudo-potential method that allows us to obtain closed expressions for the density of states. Spectral properties of surface states are assessed by means of the Green’s function averaged over disorder realisations. For comparison purposes, the configurationally averaged Green’s function is calculated by means of two different self-consistent methods, namely the self-consistent Born approximation (SCBA) and the coherent potential approximation (CPA). The latter is often regarded as the best single-site theory for the study of the spectral properties of disordered systems. However, although a large number of works employ the SCBA for the analysis of many-impurity scattering on the surface of a topological insulator, CPA studies of the same problem are scarce in the literature. In this work, we find that the SCBA overestimates the impact of the random distribution of impurities on the spectral properties of surface states compared to the CPA predictions. The difference is more pronounced when increasing the magnitude of the disorder.


2017 ◽  
Vol 173 ◽  
pp. 238-243 ◽  
Author(s):  
U.B. Jayadeep ◽  
M.S. Bobji
Keyword(s):  

2018 ◽  
Vol 29 ◽  
pp. 00002 ◽  
Author(s):  
Dariusz Woźniak ◽  
Lech Gładysiewicz ◽  
Martyna Konieczna

Belt conveyors are main part of transporting systems in mines and in many other branches of industry. During conveyor belt works different types of resistances are generated. Indentation rolling resistance is the most significant component of the resistances from the perspective of energy losses and it cause the biggest costs as well. According to latest state of analyses and measurements it is well known that theoretical rolling resistance were underestimated in comparison with the measured in-situ one. In this paper new method for determination indentation rolling resistance is presented. The authors compared theoretically and experimentally established damping factors. The relation between these two values enabled to obtain more precise equation for damping function. This function is one of the most important component in calculation of the rolling resistance. In new theoretical model value of rolling resistance is nearly twice higher than this used so far.


2013 ◽  
Vol 22 (9) ◽  
pp. 096103 ◽  
Author(s):  
Zhan-Gang Zhang ◽  
Jie Liu ◽  
Ming-Dong Hou ◽  
You-Mei Sun ◽  
Fa-Zhan Zhao ◽  
...  

1999 ◽  
Vol 43 (04) ◽  
pp. 229-240
Author(s):  
H. R. Riggs ◽  
R. C. Ertekin

One design for a mobile offshore base is to link serially as many as five large semisubmersibles to form a platform long enough to support large aircraft. This paper investigates the linear, wave-induced response characteristics of serially-connected semisubmersibles. A major motivation of this study is to understand more completely the forces required to link semisubmersible modules. The impact of connector strategy and damping on the response, especially the connector forces, is investigated, and the response "modes" which contribute to the connector forces are evaluated in detail. It is shown that the response characteristics can be impacted significantly by the connection strategy, and that connector damping can be a significant source of energy loss when compared to radiation damping. The wet natural frequencies and normal modes are also determined and used to explain the response characteristics of different connection strategies. Although the analyses are based on a specific semisubmersible design, the results provide insight on how other systems of connected semisubmersibles would likely behave.


Sign in / Sign up

Export Citation Format

Share Document