scholarly journals Effect of Austenite Grain Size on Transformation Behavior, Microstructure and Mechanical Properties of 0.1C–5Mn Martensitic Steel

2013 ◽  
Vol 53 (12) ◽  
pp. 2218-2225 ◽  
Author(s):  
Toshihiro Hanamura ◽  
Shiro Torizuka ◽  
Soutaro Tamura ◽  
Shohei Enokida ◽  
Hiroshi Takechi
2020 ◽  
Vol 837 ◽  
pp. 28-34
Author(s):  
Adnan Raza Khan ◽  
Sheng Fu Yu

The present paper aims at utilizing the 3-wire electroslag welding (ESW) to join high-speed pearlitic rail steels where microstructure and mechanical properties were investigated. The welded joint has produced an improved fracture force of 1396KN. WM was consisted of ferrite and pearlite having hardness of 27HRC, tensile strength of 748MPa and toughness of 12J, successively. HAZ was composed of pro-eutectoid ferrite and pearlite, where austenite grain size and pearlite colony size were reduced by moving away from the fusion line. In HAZ, near to the fusion line, the austenite grain size was 143±19μm, pearlite colony size was 52±9μm and pearlite interlamellar spacing was 90±27nm, which has produced hardness of 43.5HRC, tensile strength of 1228MPa, and toughness of 8J, successively. The entire investigation concludes that 3-wire ESW is an optimum and viable method, which has provided fine pearlite microstructure along with improved hardness and tensile strength.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1414
Author(s):  
Fei Huang ◽  
Jian Chen ◽  
Zhangqi Ge ◽  
Junliang Li ◽  
Yongqiang Wang

The effect of austenitizing temperature and aging treatment on the microstructure and mechanical properties of two new cold-rolled automotive steel plates (20Mn2Cr and 20Mn2CrNb) was investigated by using isothermal heat treatment, optical microscope, scanning electron microscope, microhardness tester, and tensile testing machine. The results show that as the austenitizing temperature increased, the original austenite grain sizes of both steels increased. The original austenite grain size of 20Mn2CrNb was smaller than that of 20Mn2Cr. The microhardness of 20Mn2CrNb gradually decreased with increasing aging temperature, while the hardness of 20Mn2Cr varied irregularly. The mechanical properties of 20Mn2Cr were better than those of 20Mn2CrNb under the same heat-treatment process. The effect of heat treatment on microstructure and mechanical properties was related to the martensite content, dislocation density, and precipitation of second-phase particles.


2002 ◽  
Vol 43 (5) ◽  
pp. 916-919 ◽  
Author(s):  
Jorge Otubo ◽  
Fabiana C. Nascimento ◽  
Paulo R. Mei ◽  
Lisandro P. Cardoso ◽  
Michael J. Kaufman

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 577 ◽  
Author(s):  
Sebastian Härtel ◽  
Birgit Awiszus ◽  
Marcel Graf ◽  
Alexander Nitsche ◽  
Marcus Böhme ◽  
...  

This paper examines how the initial austenite grain size in quench and partitioning (Q-P) processes influences the final mechanical properties of Q-P steels. Differences in austenite grain size distribution may result, for example, from uneven heating rates of semi-finished products prior to a forging process. In order to quantify this influence, a carefully defined heat treatment of a cylindrical specimen made of the Q-P-capable 42SiCr steel was performed in a dilatometer. Different austenite grain sizes were adjusted by a pre-treatment before the actual Q-P process. The resulting mechanical properties were determined using the upsetting test and the corresponding microstructures were analyzed by scanning electron microscopy (SEM). These investigations show that a larger austenite grain size prior to Q-P processing leads to a slightly lower strength as well as to a coarser martensitic microstructure in the Q-P-treated material.


Author(s):  
A.G. Fox ◽  
V.R. Mattes ◽  
S. Mikalac ◽  
M.G. Vassilaros

Because of their excellent weldability, high strength low alloy (HSLA) ultra low carbon bainitic (ULCB) steels are finding increasing applications in ship and submarine construction. In order to achieve the required strength and toughness in ULCB HSLA steels it is necessary to control chemical composition and thermo-mechanical processing very carefully so that the desired microstructure and mechanical properties can be achieved. For instance HSLA 100 ULCB steel (nominal yield strength 100 ksi) used by the U.S. Navy in shipbuilding applications can derive its strength and toughness from the following sources:- (1) solid solution strengthening (2) small prior austenite grain size derived from niobium carbonitride precipitation at austenite grain boundaries (3) dislocation substructure and (4) from copper precipitates (in aged alloys). The object of the present work is to correlate the microstructure and mechanical properties of production batches of HSLA 100 in the quenched and aged conditions. Because many of the salient features of these microstructures are submicron in size it was found necessary to use SEM and TEM.


Sign in / Sign up

Export Citation Format

Share Document