FIBER-OPTIC FORCE SENSOR: MATHEMATICAL MODEL, CONVERSION FUNCTION, PROTOTYPE DESIGN

2020 ◽  
Vol 6 (99) ◽  
pp. 45-58
Author(s):  
KONSTANTIN A. KHARAKHNIN ◽  
DENIS A. TERESHIN ◽  
DMITRY V. VAKHRAMEEV ◽  
PAVEL S. VAKHRAMEEV

The article considers the problem of the lack of methods for calculating and selecting design parameters when developing and implementing a fiber-optic force sensor (FOFS) as a separate element or component of the system. To solve this problem, we propose to develop a transform function of the power loss of the optical signal from the bending radius of the fiber under the action of applied forces, linking the features of the optical fiberand physico-mechanical parameters of the base on which the fiber is located. Based on the calculations performed, a variant of the FOFS prototype design is proposed.

2021 ◽  
Vol 5 (2) ◽  
pp. 63
Author(s):  
Niraj Kumbhare ◽  
Reza Moheimani ◽  
Hamid Dalir

Identifying residual stresses and the distortions in composite structures during the curing process plays a vital role in coming up with necessary compensations in the dimensions of mold or prototypes and having precise and optimized parts for the manufacturing and assembly of composite structures. This paper presents an investigation into process-induced shape deformations in composite parts and structures, as well as a comparison of the analysis results to finalize design parameters with a minimum of deformation. A Latin hypercube sampling (LHS) method was used to generate the required random points of the input variables. These variables were then executed with the Ansys Composite Cure Simulation (ACCS) tool, which is an advanced tool used to find stress and distortion values using a three-step analysis, including Ansys Composite PrepPost, transient thermal analysis, and static structural analysis. The deformation results were further utilized to find an optimum design to manufacture a complex composite structure with the compensated dimensions. The simulation results of the ACCS tool are expected to be used by common optimization techniques to finalize a prototype design so that it can reduce common manufacturing errors like warpage, spring-in, and distortion.


2016 ◽  
Vol 23 (2) ◽  
pp. 309-316
Author(s):  
Marcin Lipiński ◽  
Przemysław Krehlik ◽  
Łukasz Śliwczyński ◽  
Łukasz Buczek ◽  
Jacek Kołodziej

Abstract The low-frequency optical-signal phase noise induced by mechanical vibration of the base occurs in field-deployed fibers. Typical telecommunication data transfer is insensitive to this type of noise but the phenomenon may influence links dedicated to precise Time and Frequency (T&F) fiber-optic transfer that exploit the idea of stabilization of phase or propagation delay of the link. To measure effectiveness of suppression of acoustic noise in such a link, a dedicated measurement setup is necessary. The setup should enable to introduce a low-frequency phase corruption to the optical signal in a controllable way. In the paper, a concept of a setup in which the mechanically induced acoustic-band optical signal phase corruption is described and its own features and measured parameters are presented. Next, the experimental measurement results of the T&F transfer TFTS-2 system’s immunity as a function of the fibre-optic length vs. the acoustic-band noise are presented. Then, the dependency of the system immunity on the location of a noise source along the link is also pointed out.


2017 ◽  
Vol 17 (20) ◽  
pp. 6549-6557 ◽  
Author(s):  
Osama Al-Mai ◽  
Mojtaba Ahmadi ◽  
Jacques Albert

Author(s):  
Yibin Guo ◽  
Wanyou Li ◽  
Dequan Zou ◽  
Xiqun Lu ◽  
Tao He

In this paper a mixed lubrication model considering lubricant supply conditions on cylinder bore has been developed for the piston ring lubrication. The numerical procedures of both fully flooded and starved lubrication were included in the model. The lubrication equations and boundary conditions at the end of strokes were discussed in detail. The effects of piston ring design parameters, such as ring face profile and ring tension, on oil film thickness, friction force and power loss under fully flooded and starved lubrication conditions due to available lubricant supply on cylinder bore were studied. The simulation results show that the oil available in the inlet region of the oil film is important to the piston ring friction power loss. With different ring face crown heights and tensions, the changes of oil film thickness and friction force were apparent under fully flooded lubrication, but almost no changes were found under starved lubrication except at the end of a stroke. In addition, the oil film thickness and friction force were affected evidently by the ring face profile offsets under both fully flooded and starved lubrication conditions, and the offset towards the combustion chamber made a large contribution to forming thicker oil film during the expansion stroke. So under different lubricant supply conditions on the cylinder bore, the ring profile and tension need to be adjusted to reduce the friction and power loss. Moreover, the effects of lubricant viscosity, surface composite roughness, and engine operating speed on friction force and power loss were also discussed.


1998 ◽  
Vol 20 (2) ◽  
pp. 103-112 ◽  
Author(s):  
H. Wen ◽  
D.G. Wiesler ◽  
A. Tveten ◽  
B. Danver ◽  
A. Dandridge

This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays.


2016 ◽  
Vol 68 (2) ◽  
pp. 250-258 ◽  
Author(s):  
Ridha Mazouzi ◽  
Ahmed Kellaci ◽  
Abdelkader Karas

Purpose – This paper aims to study the effect of piston skirt design parameters on the dynamic characteristics of a piston–cylinder contact. Design/methodology/pproach – This paper focuses on an analysis of the piston dynamic response. The oil-film pressure and the structural deformation were approximated, respectively, by finite difference method and finite element method. Findings – The results show that the design parameters such as clearance, offset and the axial location of piston pin have a great influence on the dynamics of the piston and hence on the piston slap phenomenon and the frictional power loss. Originality/value – All the results mainly focus on the slap noise of the engine and can be used in the piston–liner development at the development of the engine.


2011 ◽  
Vol 27 (1) ◽  
pp. 65-74 ◽  
Author(s):  
U-Xuan Tan ◽  
Bo Yang ◽  
Rao Gullapalli ◽  
Jaydev P. Desai
Keyword(s):  

Author(s):  
Yanfang Liu ◽  
Qiang Liu ◽  
Peng Dong

An involute spur gear pair meshing model is firstly provided in this study to achieve relevant data such as rolling velocity, sliding velocity, curvature radius etc. These data are needed in a transient, Newtonian elastohydrodynamic lubrication (EHL) model which is provided later. Based on these two models, the behavior of an engaged spur gear pair during the meshing process is investigated under dynamic conditions, film thickness, pressure, friction coefficient etc. could be achieved through the models. Then, power loss under certain operating condition is calculated. Relationship between power loss and lubrication performance is also analyzed.


Sign in / Sign up

Export Citation Format

Share Document