scholarly journals Funksjonshemming, bioteknologi og menneskesyn: Utfordringer for kristen etikk

2020 ◽  
pp. 153-173
Author(s):  
Gunnar Heiene

The article discusses public attitudes to disabled people in view of recent developments within modern biotechnology, including the new technology called non-invasive prenatal diagnostics (NIPT) that makes it possible to test human fetuses for different genetic disorders. In the critical evaluation of this practice, feminist ethics is utilized. The article discusses the issue of human rights for disabled people and the specific challenges for disability ethics in this context, including the issue of “selective” abortion.

2005 ◽  
Vol 19 (3) ◽  
pp. 527-545 ◽  
Author(s):  
Colin Barnes ◽  
Geof Mercer

This article engages with debates relating to social policy and disabled people’s exclusion from the British labour market. Drawing on recent developments from within the disabled people’s movement, in particular, the concept of independent living and the social model of disability, and the associated disability studies literature, a critical evaluation of orthodox sociological theories of work, unemployment, and under-employment in relation to disabled people’s exclusion from the workplace is provided. It is argued that hitherto, analyses of work and disability have failed to address in sufficient depth or breadth the various social and environmental barriers that confront disabled people. It is suggested therefore that a reconfiguration of the meaning of work for disabled people - drawing on and commensurate with disabled people’s perspectives as expressed by the philosophy of independent living - and a social model analysis of their oppression is needed and long overdue.


2020 ◽  
Vol 1 (1) ◽  
pp. 36-41
Author(s):  
Gaurav Ranabhat ◽  
Ashmita Dhakal ◽  
Saurav Ranabhat ◽  
Ananta Dhakal ◽  
Rakshya Aryal

Modern biotechnology enables an organism to produce a totally new product which the organism does not or cannot produce normally through the incorporation of the technology of ‘Genetic engineering’. Biotechnology shows its technical merits and new development prospects in breeding of new plants varieties with high and stable yield, good quality, as well as stress tolerance and resistance. Some of the most prevailing problems faced in agricultural ecosystems could be solved with the introduction of transgenic crops incorporated with traits for insect pest resistance, herbicide tolerance and resistance to viral diseases. Plant biotechnology has gained importance in the recent past for increasing the quality and quantity of agricultural, horticultural, ornamental plants, and in manipulating the plants for improved agronomic performance. Recent developments in the genome sequencing will have far reaching implications for future agriculture. From this study, we can know that the developing world adopts these fast-changing technologies soon and harness their unprecedented potential for the future benefit of human being.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2469
Author(s):  
Chen-Yi Xie ◽  
Chun-Lap Pang ◽  
Benjamin Chan ◽  
Emily Yuen-Yuen Wong ◽  
Qi Dou ◽  
...  

Esophageal cancer (EC) is of public health significance as one of the leading causes of cancer death worldwide. Accurate staging, treatment planning and prognostication in EC patients are of vital importance. Recent advances in machine learning (ML) techniques demonstrate their potential to provide novel quantitative imaging markers in medical imaging. Radiomics approaches that could quantify medical images into high-dimensional data have been shown to improve the imaging-based classification system in characterizing the heterogeneity of primary tumors and lymph nodes in EC patients. In this review, we aim to provide a comprehensive summary of the evidence of the most recent developments in ML application in imaging pertinent to EC patient care. According to the published results, ML models evaluating treatment response and lymph node metastasis achieve reliable predictions, ranging from acceptable to outstanding in their validation groups. Patients stratified by ML models in different risk groups have a significant or borderline significant difference in survival outcomes. Prospective large multi-center studies are suggested to improve the generalizability of ML techniques with standardized imaging protocols and harmonization between different centers.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 45
Author(s):  
Iman M. Alfagih ◽  
Basmah Aldosari ◽  
Bushra AlQuadeib ◽  
Alanood Almurshedi ◽  
Mariyam M. Alfagih

Messenger RNA (mRNA)-based vaccines have shown promise against infectious diseases and several types of cancer in the last two decades. Their promise can be attributed to their safety profiles, high potency, and ability to be rapidly and affordably manufactured. Now, many RNA-based vaccines are being evaluated in clinical trials as prophylactic and therapeutic vaccines. However, until recently, their development has been limited by their instability and inefficient in vivo transfection. The nanodelivery system plays a dual function in RNA-based vaccination by acting as a carrier system and as an adjuvant. That is due to its similarity to microorganisms structurally and size-wise; the nanodelivery system can augment the response by the immune system via simulating the natural infection process. Nanodelivery systems allow non-invasive mucosal administration, targeted immune cell delivery, and controlled delivery, reducing the need for multiple administrations. They also allow co-encapsulating with immunostimulators to improve the overall adjuvant capacity. The aim of this review is to discuss the recent developments and applications of biodegradable nanodelivery systems that improve RNA-based vaccine delivery and enhance the immunological response against targeted diseases.


1984 ◽  
Vol 79 ◽  
pp. 607-616
Author(s):  
R. R. Shannon

The requirements on gratings and coatings for astronomical use differ from the general industrial requirements primarily in the scale of the components to be fabricated. Telescopes have large primary mirrors which require large coating plants to handle the components. Dispersive elements are driven by the requirement to be efficient in the presence of large working apertures, and usually optimize to large size in order to efficiently use the incoming radiation. Beyond this, there is a “new” technology of direct electronic sensors that places specific limits upon the image scale that can be used at the output of a telescope system, whether direct imagery or spectrally divided imagery is to be examined. This paper will examine the state of the art in these areas and suggest some actions and decisions that will be required in order to apply current technology to the predicted range of large new telescopes.


Sign in / Sign up

Export Citation Format

Share Document